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Computational-Statistical Gap in
BAI for Combinatorial Semi-bandits



Problem: combinatorial BAI with fixed confidence

Input: K arms (νk)k∈[K ] with mean µ ∈ RK and X ⊆ {0, 1}K

Example: Gaussian reward νk = N (µk , 1), ∀k ∈ [K ]
m-sets

matchings

spanning trees

Goal: Identify i⋆(µ) ∈ argmaxx∈X ⟨x, µ⟩ with µ unknown initially.
Assumptions: (i) i⋆(µ) is unique; (ii) for any v ∈ RK , a best
action i⋆(v) can be found in polynomial time.
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Problem: combinatorial BAI with fixed confidence

Input: K arms (νk)k∈[K ] with mean µ ∈ RK and X ⊆ {0, 1}K

Rule: At each round t, the learner
• pulls x(t) ∈ X and observes yk(t) ∼ νk iff xk(t) = 1
• decides whether to stop and outputs ı̂ ∈ X
• let τ be the round it stops

Goal: Design a δ-PAC algorithm s.t. i⋆(µ) ∈ argmaxx∈X ⟨x, µ⟩
is identified with Pµ [̂ı = i⋆(µ)] ≥ 1 − δ and Pµ[τ < ∞] = 1

(i) statistically optimal: information-theoretically minimal Eµ[τ ]
(ii) computationally efficient: running time polynomial in K

Existing δ-PAC algorithms: only (i) or only (ii)
(Open Question) Possible to design a δ-PAC algorithm achieving both?
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Challenge in solving the lowerbound problem

Instance-specific sample complexity lower bound [GK16]

For any δ-PAC algorithm1, Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ), where

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωk(µk − λk)2

2

• Σ = {
∑

x∈X wxx : w ∈ Σ|X |}: all possible arm allocations
• Λ = {λ ∈ RK : |i⋆(λ)| = 1}: all possible parameters
• Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}: confusing parameters

1Here we assume the arm-k reward distribution is νk = N (µk , 1)
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Challenge in solving the lowerbound problem

Instance-specific sample complexity lower bound [GK16]

For any δ-PAC algorithm1, Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ), where

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωk(µk − λk)2

2

• Σ = {
∑

x∈X wxx : w ∈ Σ|X |}: all possible arm allocations
• Λ = {λ ∈ RK : |i⋆(λ)| = 1}: all possible parameters
• Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}: confusing parameters

Each sampling strategy is represented by its arm allocation ω ∈ Σ.

1Here we assume the arm-k reward distribution is νk = N (µk , 1)
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Challenge in solving the lowerbound problem

Instance-specific sample complexity lower bound [GK16]

For any δ-PAC algorithm1, Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ), where

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωk(µk − λk)2

2

• Σ = {
∑

x∈X wxx : w ∈ Σ|X |}: all possible arm allocations
• Λ = {λ ∈ RK : |i⋆(λ)| = 1}: all possible parameters
• Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}: confusing parameters

The inner optimization measures the distance from µ to the most
confusing parameter (MCP) with the best action different from i⋆(µ).
⇒ The best sampling strategy has the largest distance to the MCP.

1Here we assume the arm-k reward distribution is νk = N (µk , 1)
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Challenge in solving the lowerbound problem

Instance-specific sample complexity lower bound [GK16]

For any δ-PAC algorithm1, Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ), where

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωk(µk − λk)2

2

A standard approach [GK16] achieving asymptotic optimality consists of:
• Chernoff stopping rule: τ = inf{t : tFµ̂(t)(ω̂(t)) > ln( t

δ
) + o(1)}

• Pull arms according to ω⋆(µ̂(t))) = argmaxω∈Σ Fµ̂(t)(ω)

Difficulty in determining the most confusing parameter (MCP)

The domain Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)} of Fµ(ω)
⇒ The naive approach as to solve |X | − 1 many convex programs by

partitioning Alt(µ) = ∪x ̸=i⋆(µ){λ ∈ Λ : ⟨i⋆(µ) − x, λ⟩ < 0}.
1Here we assume the arm-k reward distribution is νk = N (µk , 1)
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Computational inefficiency in prior optimal algorithms

• Track-and-Stop [GK16] at each round t has to solve

ω⋆(µ̂(t)) ∈ argmax
ω∈Σ

Fµ̂(t)(ω), (computationally expensive)

• FWS [WTP21] has to compute fx(w(t), µ̂(t)) of each
x ̸= i⋆(µ̂(t)) to deal with the nonsmoothness of Fµ̂(t)

• CombGame [JMKK21] proposed a MCP-oracle efficient
algorithm, but no efficient MCP oracle exists prior to our work

Our Perturbed Frank-Wolfe Sampling (P-FWS)

• P-FWS deals with |X | ≤ 2K actions by stochastic smoothing
• All P-FWS needs is the linear maximization i⋆ oracle
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Our MCP Algorithm: a no-regret
algorithm for solving Fµ(ω)



A crucial structural observation about Fµ(ω)

Define fx(ω, µ) = inf
λ∈RK :⟨i⋆(µ)−x,λ⟩<0

∑K
k=1

ωk (µk −λk )2

2 .

Property of fx and its Lagrangian dual gω,µ

fx(ω, µ) = max
α≥0

gω,µ(x, α) (known by [CGL16])

gω,µ(x, α) is linear in x and concave in α (our observation)

Fµ(ω) = min
x ̸=i⋆(µ)

fx(ω, µ) = min
x ̸=i⋆(µ)

max
α≥0

gω,µ(x, α) (1)
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A crucial structural observation about Fµ(ω)

Define fx(ω, µ) = inf
λ∈RK :⟨i⋆(µ)−x,λ⟩<0

∑K
k=1

ωk (µk −λk )2

2 .

Property of fx and its Lagrangian dual gω,µ

fx(ω, µ) = max
α≥0

gω,µ(x, α) (known by [CGL16])

gω,µ(x, α) is linear in x and concave in α (our observation)

Fµ(ω) = min
x ̸=i⋆(µ)

fx(ω, µ) = min
x ̸=i⋆(µ)

max
α≥0

gω,µ(x, α) (1)

Requirement: Not only to estimate Fµ(ω) but also the equilibrium
action xe s.t. Fµ(ω) = maxα≥0 gω,µ(xe , α).

• xe is needed to solve maxω∈Σ Fµ(ω) by the first-order methods
• Existing results [DP19, LNP+21, APFS22, AAS+23] on last-iterate

convergence are not applicable as they all consider convex domains
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Our proposed MCP algorithm

Algorithm 1: (ϵ, θ)-MCP(ω, µ)
for n = 1, 2, · · · do

(Follow-the-Perturbed-Leader) Zn ∼ exp(1)K and ηn = c0√
n

x(n) ∈ argmin
x ̸=i⋆(µ)

(n−1∑
m=1

gω,µ(x, α(m)) + ⟨Zn, x⟩
ηn

)

(Best-Response) α(n) ∈ argmax
α≥0

gω,µ(x(n), α)

if
√

n >
cθ(1 + ϵ)

ϵF̂
, where

{
F̂ = gω,µ(x(n⋆), α(n⋆))
n⋆ ∈ argminm≤n gω,µ(x(m), α(m))

then return (F̂ , x(n⋆));
end
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Our proposed MCP algorithm

(Computational Cost Per Iteration)

• x(n) can be computed by at most D = maxx∈X ∥x∥0 calls to i⋆(·)
• α(n) is evaluated in O(1)
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Our proposed MCP algorithm

The termination condition is designed based on Lemma 1

such that P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ holds.

(Lemma 1) If Algorithm 1 runs for N iterations, then

P


1
N

N∑
n=1

gω,µ(x(n), α(n))︸ ︷︷ ︸
≥ minN

n=1 gω,µ(x(n),α(n))=F̂

− 1
N min

x ̸=i⋆(µ)

N∑
n=1

gω,µ(x, α(n))︸ ︷︷ ︸
≤ 1

N

∑N
n=1

gω,µ(xe ,α(n))≤Fµ(ω)

≤ cθ√
N

 ≥ 1 − θ.
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Our proposed MCP algorithm

Theorem 1 (MCP)
Let (ω, µ) ∈ Σ+ × Λ. The (ϵ, θ)-MCP(ω, µ) algorithm outputs (F̂ , x̂):

• P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ

• the number of calls to i⋆(·): O
(

∥µ∥4
∞∥ω−1∥2

∞
K 3D5 ln K ln θ−1

ϵ2Fµ(ω)2

)

By envelop theorem [WTP21], we estimation (sub)gradient of Fµ(ω) by

∇ωfx̂(ω, µ) =
(

(µk − λ⋆
k)2

2

)
k∈[K ]

,

where λ⋆ is the minimizer to the optimization problem of fx̂(ω, µ).

6



Our P-FWS: the first poly-time
statistically optimal algorithm



Solving T ⋆(µ) with stochastic smoothed objective

• The well-studied stochastic smoothing [FKM05, DBW12]
takes the average value in a neighborhood of points:

F̄µ,η(ω) = EZ∼Uniform(B2)[Fµ(ω + ηZ)]

• Fµ is ℓ-Lipschitz and its smoothed objective satisfies:
• F̄µ,η is ℓK

η -smooth and F̄µ,η(ω) η↓0−−→ Fµ(ω)
• ∇F̄µ,η(ω) = E

Z∼Uniform(B2)
[∇Fµ(ω + ηZ)]

High-level design of P-FWS
Let X0 be a set s.t. ∀k ∈ [K ], there exists x ∈ X0 s.t. xk = 1.
P-FWS alternate between two phases:{

pull each x ∈ X0 once (to avoid high cost and boundary cases)
pull x(t) ∈ argmaxx∈X

〈
∇F̄µ̂(t−1),ηt (ω̂(t − 1)), x

〉
(ideal FW update)
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P-FWS: the first poly (K )-time optimal algorithm

Theorem 2 (P-FWS)
Let µ ∈ Λ and δ ∈ (0, 1). P-FWS with proper parameters is
δ-PAC and finishes in finite time;

(i) its Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1;

(ii) its Eµ[τ ] being poly (K ) in moderate confidence regime;
(iii) the expected number of i⋆ upper bounded by poly (K ).
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P-FWS: the first poly (K )-time optimal algorithm

Proof Sketch of Theorem 2

Define good events: E (1)
t when µ̂(t) is sufficiently close to µ, and E (2)

t
when x(t) is closed to the ideal FW-update.

(Step 1) By maximum theorem [FKV14], we derive uniform
continuity of Fπ and ∇F̄π,η in π

⇒ to simplify the analysis as if µ̂(t) = µ for t ≥ M

(Step 2) Under E (1)
t ∩ E (2)

t , we derive a recursive formula for the
smoothed FW updates ⇒ the FW algorithm converges

(Step 3) Eµ[τ ] ≤ T0(δ) +
∑

t≥M Pµ

[
(E (1)

t ∩ E (2)
t )c

]
, where(δ-dependent) T0(δ)

ln δ−1
δ→0−−−→ T ⋆(µ)

(δ-independent)
∑

t≥M Pµ

[
(E (1)

t ∩ E (2)
t )c

]
≤ poly (K )
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P-FWS: the first poly (K )-time optimal algorithm

Algorithm 1: P-FWS({ϵt , ηt , nt , ρt , θt}t)
Initialization: pull each x ∈ X0 four times and update estimates
for t = 4|X0| + 1, · · · do

if
√

t
|X0| ∈ N or costly to estimate Fµ̂(t−1)(ω̂(t − 1)) then

pull each x ∈ X0 once;
else

pull x(t) ∈ i⋆
(

∇F̃µ̂(t−1),ηt ,nt (ω̂(t − 1))
)

and update estimates;
if not costly to estimate Fµ̂(t)(ω̂(t)) then

compute F̂t by (ϵt , δ
t2 )-MCP(ω̂(t), µ̂(t));

return i⋆(µ̂(t)) if tF̂t > (1 + ϵt)β(t,
4|X0|−1

|X0| δ)
end

∇F̃µ̂(t−1),ηt ,nt (ω̂(t − 1)) is a nt -sample estimation to ∇F̄µ̂(t−1),ηt (ω̂(t − 1))
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Preliminary Numerical Results



Empirical evaluation on X as the set of spanning trees

All the experiments2 are performed on a Macbook Air with 16 GB memory.
Table 1: Averaged sample complexity at δ = 0.1 over 100 independent runs on a
graph with |X | = 21 025 spanning trees.

Algorithm Sample Complexity

P-FWS (ours) 1 176
CombGame [JMKK21] 1 277

Table 2: Averaged sample complexity at δ = 0.1 over 100 independent runs on a
graph with |X | = 343 385 spanning trees.

Algorithm Sample Complexity

P-FWS (ours) 1 501
CombGame [JMKK21] OOM

2Our code: https://github.com/rctzeng/NeurIPS2023-PerturbedFWS.
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Conclusion and Future Works



Conclusion and open questions

• Our proposed P-FWS is the first algorithm to close the
statistical-computational gap for combinatorial BAI by
exploring the structural properties of the lowerbound problem.

• It remains largely unexplored whether one can close the
computational-statistical gap for other tasks, such as

• combinatorial BAI with semi-bandit feedback (Bernoulli)
• combinatorial BAI with bandit feedback
• linear BAI (to have runtime polynomial in the dimension)
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