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Pure exploration on structured
bandits



Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν1, . . . , νK ), the mean of νk is µk

ν1 ν2 ν3 ν4 ν5

In round t, an agent

1. pulls arm At ∈ [K ]
2. receives the reward XAt (t) ∼ νAt

Sequential sampling strategy: At ∈ Ft = σ[A1,X1, . . . ,At−1,Xt−1]
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Pure exploration with fixed confidence

Goal: Identify a certain answer i?(µ) ∈ I
Example: Identify the best arm i?(µ) = argmaxk∈[K ] µk

A strategy consists of

• a sampling rule At (arm to explore)
• a stopping rule τ (time to stop)
• a Fτ -measurable decision rule ı̂ ∈ I (answer to return)

We wish to minimize Eµ[τ ] subject to Pµ [̂ı 6= i?(µ)] < δ
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Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when
exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?
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Lower bound [GK16]

For any good strategy,

lim inf
δ→0

Eµ[τ ]
log(1δ )

≥ T ?(µ),

where T ?(µ)−1 = supω∈Σ infλ∈Alt(µ)
∑K

k=1 ωkd(µk , λk)

• Σ :K − 1 simplex
• Alt(µ) = {λ ∈ Λ : i?(λ) 6= i?(µ)}
• d(µk , λk) : KL-divergent of arm-k reward distribution under λ and µ

⇒ An optimal algorithm has a sampling strategy described by

ω?(µ) ∈ argmax
µ∈Σ

Fµ(ω),

where Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk , λk).
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Generalized Likelihood Ratio Test (GLRT)

For each k ∈ [K ], t ≥ 1, denote

• Nk(t) =
∑t

s=1 1{As = k},
• ωk(t) = Nk(t)/t,
• µ̂k(t) =

∑t
s=1 Xk(s)1{As = k}/Nk(t) (when Nk(t) > 0),

where Xk(s) is the reward by pulling arm k at time s.

GLRT is the stopping rule s.t.
τ = inf{t ≥ 1 : tFµ̂(t)(ω(t)) ≥ β(t, δ)}, where β(t, δ) satisfies:

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ [i?(µ̂(t)) 6= i?(µ)] ≤ δ) ,

∃c1(Λ), c2(Λ) > 0 : ∀t ≥ c1(Λ), β(t, δ) ≤ log
(c2(Λ)t

δ

)
.

Many literatures[GK16, KK18, JP20, Mén19] provide such β(t, δ)
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To reach the optimality

Challenges for sampling rules:

(i). µ is unknown initially
(ii). No oracle for maxω∈Σ infλ∈Alt(µ)

∑K
k=1 ωkd(µk , λk) in

general

Previous works solve (i). by using forced exploration
[GK16, Mén19] or building a confidence interval [DKM19]
For (ii)., Previous works either solve maxmini program for a single
problem or converge to the saddle with overly conservative
approach[Mén19, DKM19]
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Frank-Wolfe based sampling (FWS)



Best challenger (BC) in unstructured bandits [GK16, Mén19]

Let i? = i?(µ) and Alt(µ) = ∪j 6=i?{λ ∈ Λ : λj ≥ λi?}, then
Fµ(ω) = minj 6=i? fj(ω,µ), where

fj(ω,µ) = inf
λj≥λi?

K∑
k=1

ωkd(µk , λk)

= ωjd(µj ,
ωi?µi? + ωjµj
ωi? + ωj

) + ωi?d(µi? ,
ωi?µi? + ωjµj
ωi? + ωj

)

Also, ∇ωfj(ω,µ) = d(µj ,
ωi?µi? +ωjµj
ωi? +ωj

)ej + d(µi? ,
ωi?µi? +ωjµj
ωi? +ωj

)e i?

After pulling each arm once, BC repeatedly does:
1. Assign Ct ← argminj 6=i?(µ̂(t)) fj(ω(t), µ̂(t))
2. Play

At ←
{
ı̂ = i?(µ̂(t)), if d(µj ,

ωı̂µı̂+ωjµj
ωı̂+ωj

) > d(µı̂, ωı̂µı̂+ωjµj
ωı̂+ωj

)
Ct , otherwise.
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Frank-Wolfe algorithm (FW)

In the view of updating ω(t), BC corresponds to FW iteration as if
the objective function is smooth (unfortunately, it is not)

FW for maxx∈Σ F (x) when F is smooth
Take x(1) ∈ Σ arbitrarily
For t = 1, . . . ,T do:

1. z(t + 1)← argmaxz∈Σ〈z,∇F (x(t))〉

2. x(t + 1)← t
t+1x(t) + 1

t+1z(t + 1)
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Curvature

For a compact set K and a concave function ψ : K 7→ R, we define

Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉] (1)

When K is a convex domain, a finite curvature permits the
convergence of FW (see e.g. [Jag13]). The intuition is that Cψ(K)
provides a controlled bound for each iteration as

ψ(x) + 〈y − x, h〉 − Cψ(K)
α2

≤ ψ(y) ≤ ψ(x) + 〈y − x, h〉,

where h ∈ ∂ψ(x) is the one attaining minimum in (1)
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Why does BC fail to reach the optimal allocation?

BC faces three issues:

(i). Fµ is not smooth
(ii). Each fj has an unbounded curvature close to the boundary

of Σ
(iii). µ is unknown initially

We devise a simple algorithm (FW-based) to track
x(t) t→∞−−−→ ω?(µ) by circumventing these issues.
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Non-smoothness issue

For (i). Fµ is not smooth

• Under mild assumption, we show Fµ is the minimum of a finite
number of smooth concave functions fj by envelop theorem

• Leveraging this fact, we have a novel and computational
efficient construction which continuously approximates the
non-smooth points
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Unbounded curvature and unknown µ

The remaining issues,

(ii). Each fj has an unbounded curvature close to the
boundary of Σ

(iiii). µ is unknown initially,

are solved by a single trick

Let updated direction z(t) cover e1, . . . , eK sufficiently often so
that the tracked allocation, x(t), is kept away from the boundary
and each action is forced to be played frequently enough
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Assumption 1 and an example

Assumption 1
∀i ∈ I, Si = {µ ∈ Λ : i?(µ) = i} is open and its complementary
Λ \ Si is a finite union of convex set. Namely, a finite collection
Ji of convex set C i

j s.t. Λ \ Si = ∪j∈JiC i
j

Example: BAI for unstructured bandit
Here Λ = {µ ∈ (0, 1)K : ∃i ∈ [K ] s.t. µi > µk , ∀k 6= i}, and for
each i ∈ [K ], Si = {µ ∈ Λ : µi > µk , ∀k 6= i}
We can see that Λ \ Si = ∪j 6=iC i

j , where C i
j = {λ ∈ Λ : λj > λi}

is a convex set ∀j 6= i

With Assumption 1, we define
fj(ω,µ) = infλ∈Ci

j

∑K
k=1 ωkd(µk , λk) for any (ω,µ) ∈ Σ̊× Si and

j ∈ Ji , where Σ̊ is the interior of Σ
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A counterexample for Assumption 1

Though most pure exploration and structures satisfy Assumption
1, it may not hold for an arbitrary parameter set. For example,

I

s ,

Als ,

0 I
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Envelop theorem

Proposition 1.
Let i ∈ I, j ∈ Ji . Define for all (ω,µ) ∈ Σ× Si ,

λj(ω,µ) = arg min
λ∈cl(Ci

j )

∑
k
ωkd(µk , λk), (2)

where cl(C i
j ) is the closure of C i

j . Then under Assumption 1,
λj(ω,µ) is unique for all (ω,µ) ∈ Σ̊× Si . In addition, fj is
continuously differentiable on Σ̊× Si , and ∀(ω,µ) ∈ Σ̊× Si ,

∇ωfj(ω,µ) =
∑

k
d(µk ,λj(ω,µ)k)ek , (3)
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Non-smooth point may cause infinite curvature

Recall that Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉]

Suppose ψ(x) = |x | over K = [−1, 1]. Let x ∈ (0, 12), z = 1− x
and α = 2x . By definition, ∂ψ(x) = {1}

Cψ(K) ≥ min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉]

= 1
4x2 (|−x | − |x |+ 2x) = 1

2x .

Hence, Cψ(K) =∞
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Existing FW works for non-smooth functions

From the last example, ∂ψ(x) is a discontinuous set-function, and
hence fails to provide a proper bound across the non-smooth point.

Existing FW-based works on non-smooth functions are:

• smoothing the objective function [FKM05, HK12]
• enlarging the set of differential [RCS19, CL18] (collect the set
of the subdifferentials in the neighborhood)

Nevertheless, they are all too computational expensive to solve
in our problem
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r-subdifferential space

Recall that Fµ(ω) = minj∈Ji fj(ω,µ) for µ ∈ Si , we define

HFµ(ω, r) = cov {∇ωfj(ω,µ) : j ∈ Ji , fj(ω,µ) < Fµ(ω) + r} , ∀r ∈ R+,

where cov(S) is the convex hull of a set S.

The advantages include:

• HFµ(ω, r) is a continuous set-mapping
• HFµ(ω, r) is very easy to be computed

Our modified FW update is z(t + 1)← argmaxz∈Σ minh∈HFµ(x(t),rt )〈z − x(t), h〉,
x(t + 1)← t

t+1x(t) + 1
t+1z(t + 1)

19
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FWS

Input: Confidence level δ, sequence {rt}t≥1

Initialization: Sample each arm once and update ω(K), x(K) = ( 1
K , . . . ,

1
K ), and µ̂(K)

t ←K

While tFµ̂(t)(ω(t) < β(δ, t) ←Stopping criteria or µ̂(t − 1) /∈ Λ

IF
√
bt/Kc ∈ N or µ̂(t − 1) /∈ Λ, (Forced exploration) z(t)← ( 1

K , . . . ,
1
K )

Else, (FW update)

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1) (x(t−1),rt )

〈z − x(t − 1), h〉

Update x(t)← t−1
t x(t − 1) + 1

t z(t)

Sample At ← argmaxk xk (t)/ωk (t − 1) (ties broken arbitrarily)
Update ω(t) and µ̂(t)

Output: i?(µ̂(t))
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Theoretical Results



Assumption 2

For γ ∈ (0, 1
K ), let Σγ = {ω ∈ Σ : mink ωk ≥ γ}

Assumption 2.
For all µ ∈ Λ, there exist L,D > 0 s.t

(i). ∀j ∈ Ji?(µ),ω ∈ Σ, ‖∇ωfj(ω,µ)‖∞ ≤ L
(ii). ∀γ ∈ (0, 1/K ) and ∀j ∈ Ji?(µ), Cfj (·,µ)(Σγ) ≤ D

γ

We also provide a generic method to verify Assumption 2.
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Asymptotic optimality of FWS

Theorem 1
Consider the FWS algorithm with a sequence {rt}t≥1 strictly
positive reals satisfying

• limt→∞
1
t
∑t

s=1 rs = 0,
• limt→∞ trt =∞.

Under Assumptions 1, 2., the algorithm terminates in finite time
a.s. and is δ-PAC. Its sample complexity τ satisfies: ∀µ ∈ Λ,

Pµ
[

lim
δ→0

τ

log(1/δ) ≤ T ?(µ)
]

= 1, and lim
δ→0

Eµ [τ ]
log(1/δ) ≤ T ?(µ).

With further assumptions, we can provide non-asymptotic upper
bound for Eµ[τ ]
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Numerical Results



Experiment (i) Unstructured bandits

Averaged sample complexity at δ = 0.01

Bernoulli Gaussian

23



Experiment (ii) Linear bandits

Averaged sample complexity at δ = 0.01

BAI ThresholdingBandit
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Experiment (iii) Lipschitz bandits

Averaged Sample complexity at δ = 0.01

Experiment 1 Experiment 2

This is the first result for Lipschitz bandits in literatures
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Related work and conclusion

Related works:

• TaS [GK16]: Compute and track the optimal allocation
• LMA [Mén19]: Apply mirror ascent to update x(t)
• Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach ω?(µ)

Unclear to extend the above approaches to general structures

Conclusion:

• FWS is computationally and statistically efficient for general
pure exploration problems

• Theoretically, FWS matchs the instance-specific lower bounds
• Numerically, FWS is competitive to the state-of-art algorithms
in structured bandits
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