Fast Pure Exploration via Frank-Wolfe

Po-An Wang!, Ruo-Chun Tzeng?, and Alexandre Proutiere!

Conference on Neural Information Processing Systems, 2021

v

2EECS, Division of Theoretical Computer Science BB,
KTH Royal Institute of Technology 8} KTH % &

% VETENSKAP ié‘
38 OCH KONST &%

TR

1EECS, Division of Decision and Control System



Pure exploration on structured
bandits
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In round t, an agent

1. pulls arm A; € [K]

2. receives the reward Xy, (t) ~ va,

o
Sequential sampling strategy: A; € Fr = o[A1, X1,.. ., Ar—1, Xe—1]i K8



Pure exploration with fixed confidence

Goal: Identify a certain answer i*(p) € Z
Example: Identify the best arm i*(p) = argmax (k] tk

A strategy consists of
e a sampling rule A; (arm to explore)

e a stopping rule 7 (time to stop)

e a F.-measurable decision rule i € Z (answer to return)



Pure exploration with fixed confidence

Goal: Identify a certain answer i*(p) € Z
Example: Identify the best arm i*(p) = argmax (k] tk

A strategy consists of

e a sampling rule A; (arm to explore)
e a stopping rule 7 (time to stop)

e a F.-measurable decision rule i € Z (answer to return)

We wish to minimize E,[7] subject to P,[i # i*(p)] <6
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Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when

exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?



Lower bound [GK16]

For any good strategy,

liminf E”[Z] > T*(p),
0—0 |Og(3)

where T*(p1) ™! = sup,,cx infaeai(u) Soke1 wkd (ks Ak)

e > K — 1 simplex

o Alt(p) ={x € N:i*(A) # i*(p)}
o d(uk, Ax) : KL-divergent of arm-k reward distribution under A and p



Lower bound [GK16]

For any good strategy,

#[ ] *
e og(Zy = T )

where T*(p1) ™! = sup,,cx infaeai(u) Soke1 wkd (ks Ak)

e > K — 1 simplex

o Alt(p) ={x € N:i*(A) # i*(p)}
o d(uk, Ax) : KL-divergent of arm-k reward distribution under A and p

= An optimal algorithm has a sampling strategy described by

w*(p) € argmax Fp(w),
pHEL

P
where F,(w) = inf Zwkd ks Ak)- e

AEAIt(p) £



Generalized Likelihood Ratio Test (GLRT)

For each k € [K], t > 1, denote

Zs 1 H{A - k}

) = Nk( )/t

o fk(t) = Sty X(s)1{As = k}/Ni(t) (when Ni(t) > 0),
(

° Nk(t)

° wk(t

where X(s) is the reward by pulling arm k at time s.
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For each k € [K], t > 1, denote

o Ni(t) = Sty 1{A: = K},
o wi(t) = Nk(t)/t,
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where X(s) is the reward by pulling arm k at time s.
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Jai(A), ea(A) > 0 = Yt > ai(A), A(t3) < log (Q(’\)t) .
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Challenges for sampling rules:

(i). p is unknown initially

(ii). No oracle for maxyes infxcar(p) SR wrd (g, Ax) in
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To reach the optimality

Challenges for sampling rules:

(i). p is unknown initially

(ii). No oracle for maxyes infxcar(p) SR wrd (g, Ax) in
general

Previous works solve (i). by using forced exploration

[GK16, Mén19] or building a confidence interval [DKM19]

For (ii)., Previous works either solve maxmini program for a single
problem or converge to the saddle with overly conservative
approach[Mén19, DKM19]



Frank-Wolfe based sampling (FWS)



Best challenger (BC) in unstructured bandits [GK16, Mén19]

Let i* = i*(p) and Alt(p) = Ujzis{X € A1 A\j > Ajx }, then
Fu(w) = minjzix fi(w, 1), where

K

fi(w, ) = inf > wid(pui Ae)
J= =1
Wi hjx + Wil Wix [j* + Wijlkj
= wyd(pj, TR e (e, 2B T
wjd(p; Wi + wj ) +wird(pi Wi + w; )

Also, Vo fi(w, p) = d(p, SEbttiye. 4 dl( g, ntie +eittiyg,

wix twj wix twj

After pulling each arm once, BC repeatedly does:
1. Assign Cp < argmin;ix¢)) fj(w(t), fi(t))

2. Play
P — (0 : ips-Huwjt sy
oo =), 0 dy, SR > d(, )
t <_ . %Z‘cﬂ“g’iﬁk
C;, otherwise. e



Frank-Wolfe algorithm (FW)

In the view of updating w(t), BC corresponds to FW iteration as if
the objective function is smooth (unfortunately, it is not)

FW for maxyey F(x) when F is smooth
Take x(1) € X arbitrarily
Fort=1,..., T do:

1. z(t + 1) < argmax,5(z, VF(x(t)))

2. x(t+1) « Ax(t) + Z52(t +1)




Curvature

For a compact set K and a concave function ¢ : K — R, we define

. 1
Cy(K) = DI [b(x) = &(y) +{y = x, )] (1)
X,z X
ae(0,1]
y=x+a(z—x)



Curvature

For a compact set K and a concave function ¢ : K — R, we define

. 1
Cy(K) = WY Lo [b(x) = &(y) +{y = x, )] (1)
X,z X
ae(0,1]
y=x+a(z—x)

When K is a convex domain, a finite curvature permits the

convergence of FW (see e.g. [Jagl3]). The intuition is that Cy(K)
provides a controlled bound for each iteration as

Cyp(K
000+t —x.h) — ) < ily) < w0+l o),
#QQ&
where h € 0v(x) is the one attaining minimum in (1) %KTH%
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BC faces three issues:

(i). F, is not smooth
(ii). Each f; has an unbounded curvature close to the boundary
of X

(iii). w is unknown initially



Why does BC fail to reach the optimal allocation?

BC faces three issues:

(i). F, is not smooth

(ii). Each f; has an unbounded curvature close to the boundary
of X

(iii). w is unknown initially

We devise a simple algorithm (FW-based) to track
x(t) =% w* () by circumventing these issues.
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Non-smoothness issue

For (i). F, is not smooth

e Under mild assumption, we show F, is the minimum of a finite
number of smooth concave functions f; by envelop theorem

e Leveraging this fact, we have a novel and computational
efficient construction which continuously approximates the
non-smooth points
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Unbounded curvature and unknown p

The remaining issues,

(ii). Each f; has an unbounded curvature close to the
boundary of ©

(iiii). g is unknown initially,
are solved by a single trick

Let updated direction z(t) cover e, ..., ek sufficiently often so
that the tracked allocation, x(t), is kept away from the boundary
and each action is forced to be played frequently enough
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Assumption 1 and an example

Assumption 1

VieZ Si={peN:i*(pn)=1i}isopen and its complementary
A\ S; is a finite union of convex set. Namely, a finite collection
Ji of convex set Cf s.t. A\ §; = Uje7,C)

Example: BAI for unstructured bandit

Here A = {u € (0,1)% : 3i € [K] s.t. p; > pk, Yk # i}, and for
each i € [K], Si={pm € N: i > pk, Yk # i}

We can see that A\ S; = UjCj, where C/ = {A e A \; > A}
is a convex set Vj # |

With Assumption 1, we define
filw,p) = inf}\EC} SR wid (i, ) for any (w, m) € 3 x S; and ims‘:

j € Ji, where Y is the interior of ¥
14



A counterexample for Assumption 1

Though most pure exploration and structures satisfy Assumption
1, it may not hold for an arbitrary parameter set. For example,

A\S




Envelop theorem

Proposition 1.
Let i € Z, j € J;. Define for all (w,p) € X X S;,

Aj(w, 1) = arg)‘emlm Zwkd ks Ak), (2)
C

where cl(C;) is the closure of Cj. Then under Assumption 1,
Aj(w, p) is unique for all (w, u) € > x S;. In addition, f; is
continuously differentiable on - x S;, and V(w, ) € ¥ x S,

Var(e10) = 32 e Mo ) e 3)



Envelop theorem

Proposition 1.
Let i € Z, j € J;. Define for all (w,pn) € £ X S;,
Aj(w, p) = argAErnlln Zwkd ks Ak),s (2)
C
where cI(CJf) is the closure of CJ’ Then under Assumption 1,
Aj(w, p) is unique for all (w, u) € ¥ x S;. In addition, f; is
continuously differentiable on ¥ x S;, and V(w, u) € ¥ x Sj,

Vofi(w, 1) Zd s Aj(w, 1), )ex, (3)
Example (Unstructured BAI) {i%%
i* Hj* j - ix jIbj xﬁr‘g
filw, ) = wjd(py, CEETUE) 4 e d(pe, SR "
i* Hix Tl i* Hix FWilj
Vohlw,pn) = d(u, L g, (e, Sttt ), g
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Envelop theorem

Proposition 1.
Let i € Z, j € J;. Define for all (w,pn) € £ X S;,
Aj(w, p) = argAErnlln Zwkd ks Ak),s (2)
C
where cI(CJf) is the closure of CJ’ Then under Assumption 1,
Aj(w, p) is unique for all (w, u) € ¥ x S;. In addition, f; is
continuously differentiable on ¥ x S;, and V(w, u) € ¥ x Sj,

Vo fi(w, p) Zd e Nj(w, 1), ) e (3)
H (2
ence, s
&
e Once we can solve (2), we have Vf; and f;
16

e F, = minjes f;(-, 1) is the minimum of finite set of smooth
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and a = 2x. By definition, 9y(x) = {1}




Non-smooth point may cause infinite curvature

Recall that Cy(K) = :,zuep’C hergli/}rzx) % [(x) —¢Y(y) + (y — x, h)]
a€(0,1]
y=x+a(z—x)

Suppose (x) = |x| over K = [~1,1]. Let x € (0,2),z=1—x
and a = 2x. By definition, 9y(x) = {1}

N |
CulK) 2, min =5 [0(x) = ¥(y) + {y = x, )] I

B 1
 4x2

Hence, Cy(K) = o0

1
—x| — 2x) = —.
(I=x] = x| +2x) = 5~
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Existing FW works for non-smooth functions

From the last example, 0v¢(x) is a discontinuous set-function, and
hence fails to provide a proper bound across the non-smooth point.
Existing FW-based works on non-smooth functions are:

e smoothing the objective function [FKMO05, HK12]

e enlarging the set of differential [RCS19, CL18] (collect the set
of the subdifferentials in the neighborhood)

Nevertheless, they are all too computational expensive to solve
in our problem
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r-subdifferential space

Recall that F(w) = minjc s fi(w, p) for p € S;, we define
He,(w,r) = cov{Vufi(w,pu) 1 j € T, fi(w, p) < Fu(w) +r}, Vr e Ry,

where cov(S) is the convex hull of a set S.

The advantages include:

e Hg,(w,r) is a continuous set-mapping

® Hg,(w,r) is very easy to be computed

Our modified FW update is

z(t 4+ 1) < argmax,cx MiNheHe, (e g (2 — x(2), h), -
x(t+1) < g x(t) + t+lz(t +1) {im&
St



FWS

Input: Confidence level §, sequence {r¢},~

Initialization: Sample each arm once and update w(K), x(K) = (%7 ce %), and fi(K)
t K
While tFp ) (w(t) < B(6, t) «-Stopping criteria or fi(t — 1) ¢ A

IF\/|t/K] € Nor i(t — 1) ¢ A, (Forced exploration) z(t) + (%, e %)

Else, (FW update)

z(t) < argmax min (z—x(t —1),h)
z€x hEHFﬂ(hl)(X(ffl);rr)

Update x(t) + t;tlx(t -1)+ %z(t)

Sample A¢ < argmax; xk(t)/wk(t — 1) (ties broken arbitrarily)

Update w(t) and fi(t) Ko

{xm

Output: *(f(t)) S
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For v € (0, %) let ¥, = {w € X:mingwk > 7}
Assumption 2.

For all po € A, there exist L, D > 0 s.t

(). Vje Jix(u),w € L, IVofi(w,m)|l, <L

. . D
(i)). Vy € (0,1/K) and Vj € Tj=(uy, Cr( ) () < =



For v € (0, %) let ¥, = {w € X:mingwk > 7}

Assumption 2.
For all po € A, there exist L, D > 0 s.t

(). Vj € Tis(uyw € L, [Vufi(w, p)ll, <L
(ii). ¥y € (0,1/K) and Vj € Tjx(p), Ch(.)(Z4) < 2

We also provide a generic method to verify Assumption 2.



Asymptotic optimality of FWS

Theorem 1

Consider the FWS algorithm with a sequence {r;}¢>1 strictly
positive reals satisfying

. 1 t
o lim; o T 25:1 rs =0,

o limi_ o try = 00.

Under Assumptions 1, 2., the algorithm terminates in finite time
a.s. and is 9-PAC. Its sample complexity 7 satisfies: Y € A,

< T*(pw)| =1, and I|m Eu [7] < T ().

b i e i Tog(1/5)

bound for E,,[7]



Numerical Results




Experiment (i) Unstructured bandits

Averaged sample complexity at § = 0.01
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Experiment (ii) Linear bandits

Averaged sample complexity at § = 0.01
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N
iKTHE
S



Experiment (iii) Lipschitz bandits

Averaged Sample complexity at § = 0.01

1.0x10° | + e
I 8.0x10%f
8.0x10%F
6.0x10%f
6.0x10%F
. ‘ 4.0x10%f
4.0x10°
a4l
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Experiment 1 Experiment 2
This is the first result for Lipschitz bandits in literatures ﬁz@%
iKTH
S



Related work and conclusion

Related works:

e TaS [GK16]: Compute and track the optimal allocation

e LMA [Mén19]: Apply mirror ascent to update x(t)

e Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach w*(p)

Unclear to extend the above approaches to general structures



Related work and conclusion

Related works:

e TaS [GK16]: Compute and track the optimal allocation

e LMA [Mén19]: Apply mirror ascent to update x(t)

e Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach w*(p)

Unclear to extend the above approaches to general structures
Conclusion:

e FWS is computationally and statistically efficient for general
pure exploration problems

° Theoretically, FWS matchs the instance-specific lower bounds

in structured bandits

26
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