Fast Pure Exploration via Frank-Wolfe

Po-An Wang¹, Ruo-Chun Tzeng², and Alexandre Proutiere¹ Conference on Neural Information Processing Systems, 2021

¹EECS, Division of Decision and Control System

²EECS, Division of Theoretical Computer Science KTH Royal Institute of Technology

Pure exploration on structured bandits

Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν_1, \ldots, ν_K), the mean of ν_k is μ_k

 ν_1

 ν_2

 ν_3

 ν_5

Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν_1, \ldots, ν_K), the mean of ν_k is μ_k

In round t, an agent

- 1. pulls arm $A_t \in [K]$
- 2. receives the reward $X_{A_t}(t) \sim \nu_{A_t}$

Sequential sampling strategy: $A_t \in \mathcal{F}_t = \sigma[A_1, X_1, \dots, A_{t-1}, X_{t-1}]$

Goal: Identify a certain answer $i^*(\mu) \in \mathcal{I}$ Example: Identify the best arm $i^*(\mu) = \operatorname{argmax}_{k \in [K]} \mu_k$ A strategy consists of

- a sampling rule A_t (arm to explore)
- a stopping rule τ (time to stop)
- a $\mathcal{F}_{ au}$ -measurable decision rule $\hat{\imath} \in \mathcal{I}$ (answer to return)

Goal: Identify a certain answer $i^*(\mu) \in \mathcal{I}$ Example: Identify the best arm $i^*(\mu) = \operatorname{argmax}_{k \in [K]} \mu_k$ A strategy consists of

- a sampling rule A_t (arm to explore)
- a stopping rule au (time to stop)
- a $\mathcal{F}_{ au}$ -measurable decision rule $\hat{\imath} \in \mathcal{I}$ (answer to return)

We wish to minimize $\mathbb{E}_{\mu}[\tau]$ subject to $\mathbb{P}_{\mu}[\hat{\imath} \neq i^{*}(\mu)] < \delta$

"Side information" is encoded by the **structure** Popular structures: Unstructured, Linear, Lipschitz, Dueling, Combinatorial, Unimodal, Monotone, Spectral and Cascading

"Side information" is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling, Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when exploiting the structure?

"Side information" is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling, Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when exploiting the structure?

Question 2. Can we devise a computational efficient algorithm achieving the promised gains for all structures?

Lower bound [GK16]

For any good strategy,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\log(\frac{1}{\delta})} \geq T^{\star}(\mu),$$

where $T^{\star}(\mu)^{-1} = \sup_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$

- $\Sigma: K 1$ simplex
- Alt $(\mu) = \{\lambda \in \Lambda : i^*(\lambda) \neq i^*(\mu)\}$
- $d(\mu_k, \lambda_k)$: KL-divergent of arm-k reward distribution under $oldsymbol{\lambda}$ and $oldsymbol{\mu}$

Lower bound [GK16]

For any good strategy,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\log(\frac{1}{\delta})} \geq T^{\star}(\mu),$$

where $T^{\star}(\mu)^{-1} = \sup_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$

- $\Sigma: K 1$ simplex
- Alt $(\mu) = \{\lambda \in \Lambda : i^*(\lambda) \neq i^*(\mu)\}$
- $d(\mu_k, \lambda_k)$: KL-divergent of arm-k reward distribution under λ and μ

 \Rightarrow An optimal algorithm has a sampling strategy described by

$$egin{aligned} &\omega^{\star}(\mu)\in rgmax_{\mu\in\Sigma}F_{\mu}(\omega),\ &\mu\in\Sigma \end{aligned}$$
 where $F_{\mu}(\omega)=\inf_{\lambda\in\operatorname{Alt}(\mu)}\sum_{k=1}^{K}\omega_{k}d(\mu_{k},\lambda_{k}). \end{aligned}$

Generalized Likelihood Ratio Test (GLRT)

For each $k \in [K]$, $t \ge 1$, denote

•
$$N_k(t) = \sum_{s=1}^t \mathbb{1}\{A_s = k\},\$$

- $\omega_k(t) = N_k(t)/t$,
- $\hat{\mu}_k(t) = \sum_{s=1}^t X_k(s) \mathbb{1}\{A_s = k\} / N_k(t) \text{ (when } N_k(t) > 0),$

where $X_k(s)$ is the reward by pulling arm k at time s.

Generalized Likelihood Ratio Test (GLRT)

For each $k \in [K], t \ge 1$, denote

•
$$N_k(t) = \sum_{s=1}^t \mathbb{1}\{A_s = k\},\$$

- $\omega_k(t) = N_k(t)/t$,
- $\hat{\mu}_k(t) = \sum_{s=1}^t X_k(s) \mathbb{1}\{A_s = k\} / N_k(t) \text{ (when } N_k(t) > 0),$

where $X_k(s)$ is the reward by pulling arm k at time s. **GLRT** is the stopping rule s.t.

 $au = \inf\{t \ge 1 : tF_{\hat{\mu}(t)}(\boldsymbol{\omega}(t)) \ge \beta(t,\delta)\}$, where $\beta(t,\delta)$ satisfies:

 $\begin{aligned} \forall t \geq 1, \quad \left(tF_{\hat{\mu}(t)}(\boldsymbol{\omega}(t)) \geq \beta(t,\delta)\right) \Longrightarrow \left(\mathbb{P}_{\mu}\left[i^{*}(\hat{\mu}(t)) \neq i^{*}(\mu)\right] \leq \delta\right), \\ \exists c_{1}(\Lambda), c_{2}(\Lambda) > 0 \quad : \quad \forall t \geq c_{1}(\Lambda), \quad \beta(t,\delta) \leq \log\left(\frac{c_{2}(\Lambda)t}{\delta}\right). \end{aligned}$

Generalized Likelihood Ratio Test (GLRT)

For each $k \in [K], t \ge 1$, denote

•
$$N_k(t) = \sum_{s=1}^t \mathbb{1}\{A_s = k\},\$$

•
$$\omega_k(t) = N_k(t)/t$$
,

• $\hat{\mu}_k(t) = \sum_{s=1}^t X_k(s) \mathbb{1}\{A_s = k\} / N_k(t) \text{ (when } N_k(t) > 0),$

where $X_k(s)$ is the reward by pulling arm k at time s. **GLRT** is the stopping rule s.t.

 $au = \inf\{t \geq 1 : tF_{\hat{\mu}(t)}(\boldsymbol{\omega}(t)) \geq \beta(t,\delta)\}$, where $\beta(t,\delta)$ satisfies:

 $\begin{aligned} \forall t \geq 1, \quad \left(tF_{\hat{\mu}(t)}(\boldsymbol{\omega}(t)) \geq \beta(t,\delta)\right) \Longrightarrow \left(\mathbb{P}_{\mu}\left[i^{*}(\hat{\mu}(t)) \neq i^{*}(\mu)\right] \leq \delta\right), \\ \exists c_{1}(\Lambda), c_{2}(\Lambda) > 0 \quad : \quad \forall t \geq c_{1}(\Lambda), \quad \beta(t,\delta) \leq \log\left(\frac{c_{2}(\Lambda)t}{\delta}\right). \end{aligned}$

Many literatures[GK16, KK18, JP20, Mén19] provide such $\beta(t, \delta)$

Challenges for sampling rules:

- (i). μ is unknown initially
- (ii). No oracle for $\max_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$ in general

Challenges for sampling rules:

- (i). μ is unknown initially
- (ii). No oracle for $\max_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$ in general

Previous works solve (i). by using forced exploration [GK16, Mén19] or building a confidence interval [DKM19]

Challenges for sampling rules:

- (i). μ is unknown initially
- (ii). No oracle for $\max_{\omega \in \Sigma} \inf_{\lambda \in Alt(\mu)} \sum_{k=1}^{K} \omega_k d(\mu_k, \lambda_k)$ in general

Previous works solve (i). by using forced exploration [GK16, Mén19] or building a confidence interval [DKM19] For (ii)., Previous works either solve maxmini program for a single problem or converge to the saddle with overly conservative approach[Mén19, DKM19]

Frank-Wolfe based sampling (FWS)

Best challenger (BC) in unstructured bandits [GK16, Mén19]

Let
$$i^* = i^*(\mu)$$
 and $Alt(\mu) = \bigcup_{j \neq i^*} \{ \lambda \in \Lambda : \lambda_j \ge \lambda_{i^*} \}$, then $F_{\mu}(\omega) = \min_{j \neq i^*} f_j(\omega, \mu)$, where

$$egin{split} &\mathcal{L}_{j}(\omega,\mu) = \inf_{\lambda_{j} \geq \lambda_{i^{\star}}} \sum_{k=1}^{K} \omega_{k} d(\mu_{k},\lambda_{k}) \ &= \omega_{j} d(\mu_{j}, rac{\omega_{i^{\star}} \mu_{i^{\star}} + \omega_{j} \mu_{j}}{\omega_{i^{\star}} + \omega_{j}}) + \omega_{i^{\star}} d(\mu_{i^{\star}}, rac{\omega_{i^{\star}} \mu_{i^{\star}} + \omega_{j} \mu_{j}}{\omega_{i^{\star}} + \omega_{j}}) \end{split}$$

Also, $\nabla_{\omega} f_j(\omega, \mu) = d(\mu_j, \frac{\omega_{i^*} + \mu_{i^*} + \omega_j \mu_j}{\omega_{i^*} + \omega_j}) \boldsymbol{e}_j + d(\mu_{i^*}, \frac{\omega_{i^*} + \mu_{i^*} + \omega_j \mu_j}{\omega_{i^*} + \omega_j}) \boldsymbol{e}_{i^*}$ After pulling each arm once, BC repeatedly does:

1. Assign $C_t \leftarrow \operatorname{argmin}_{j \neq i^*(\hat{\mu}(t))} f_j(\omega(t), \hat{\mu}(t))$ 2. Play $A_t \leftarrow \begin{cases} \hat{i} = i^*(\hat{\mu}(t)), \text{ if } d(\mu_j, \frac{\omega_{\hat{i}}\mu_{\hat{i}} + \omega_j\mu_j}{\omega_{\hat{i}} + \omega_j}) > d(\mu_{\hat{i}}, \frac{\omega_{\hat{i}}\mu_{\hat{i}} + \omega_j\mu_j}{\omega_{\hat{i}} + \omega_j}) \\ C_t, \text{ otherwise.} \end{cases}$

In the view of updating $\omega(t)$, BC corresponds to FW iteration as if the objective function is smooth (unfortunately, it is not)

FW for $\max_{x \in \Sigma} F(x)$ when F is smooth Take $x(1) \in \Sigma$ arbitrarily For t = 1, ..., T do:

- 1. $\mathbf{z}(t+1) \leftarrow \operatorname{argmax}_{\mathbf{z} \in \Sigma} \langle \mathbf{z}, \nabla F(\mathbf{x}(t)) \rangle$
- 2. $\mathbf{x}(t+1) \leftarrow \frac{t}{t+1}\mathbf{x}(t) + \frac{1}{t+1}\mathbf{z}(t+1)$

For a compact set $\mathcal K$ and a concave function $\psi:\mathcal K\mapsto\mathbb R,$ we define

$$C_{\psi}(\mathcal{K}) = \sup_{\substack{\boldsymbol{x}, \boldsymbol{z} \in \mathcal{K} \\ \alpha \in (0,1] \\ \boldsymbol{y} = \boldsymbol{x} + \alpha(\boldsymbol{z} - \boldsymbol{x})}} \min_{\boldsymbol{h} \in \partial \psi(\boldsymbol{x})} \frac{1}{\alpha^2} \left[\psi(\boldsymbol{x}) - \psi(\boldsymbol{y}) + \langle \boldsymbol{y} - \boldsymbol{x}, \boldsymbol{h} \rangle \right] \quad (1)$$

For a compact set ${\mathcal K}$ and a concave function $\psi:{\mathcal K}\mapsto {\mathbb R},$ we define

$$C_{\psi}(\mathcal{K}) = \sup_{\substack{\mathbf{x}, \mathbf{z} \in \mathcal{K} \\ \alpha \in (0,1] \\ \mathbf{y} = \mathbf{x} + \alpha(\mathbf{z} - \mathbf{x})}} \min_{h \in \partial \psi(\mathbf{x})} \frac{1}{\alpha^2} \left[\psi(\mathbf{x}) - \psi(\mathbf{y}) + \langle \mathbf{y} - \mathbf{x}, h \rangle \right] \quad (1)$$

When \mathcal{K} is a convex domain, a finite curvature permits the convergence of FW (see e.g. [Jag13]). The intuition is that $C_{\psi}(\mathcal{K})$ provides a controlled bound for each iteration as

$$\psi(\mathbf{x}) + \langle \mathbf{y} - \mathbf{x}, h \rangle - \frac{C_{\psi}(\mathcal{K})}{\alpha^2} \le \psi(\mathbf{y}) \le \psi(\mathbf{x}) + \langle \mathbf{y} - \mathbf{x}, h \rangle,$$

where $h \in \partial \psi(\mathbf{x})$ is the one attaining minimum in (1)

BC faces three issues:

- (i). F_{μ} is not smooth
- (ii). Each f_j has an unbounded curvature close to the boundary of Σ
- (iii). μ is unknown initially

BC faces three issues:

- (i). F_{μ} is not smooth
- (ii). Each f_j has an unbounded curvature close to the boundary of Σ
- (iii). μ is unknown initially

We devise a simple algorithm (FW-based) to track $x(t) \xrightarrow{t \to \infty} \omega^*(\mu)$ by circumventing these issues.

For (i). F_{μ} is not smooth

For (i). F_{μ} is not smooth

 Under mild assumption, we show F_μ is the minimum of a finite number of smooth concave functions f_i by envelop theorem

For (i). F_{μ} is not smooth

- Under mild assumption, we show F_μ is the minimum of a finite number of smooth concave functions f_i by envelop theorem
- Leveraging this fact, we have a novel and computational efficient construction which continuously approximates the non-smooth points

The remaining issues,

- (ii). Each f_j has an unbounded curvature close to the boundary of Σ
- (iiii). μ is unknown initially,

are solved by a single trick

The remaining issues,

- (ii). Each f_j has an unbounded curvature close to the boundary of Σ
- (iiii). μ is unknown initially,

are solved by a single trick

Let updated direction z(t) cover e_1, \ldots, e_K sufficiently often so that the tracked allocation, x(t), is kept away from the boundary and each action is forced to be played frequently enough

Assumption 1 and an example

Assumption 1

 $\forall i \in \mathcal{I}, \ S_i = \{ \mu \in \Lambda : i^*(\mu) = i \}$ is open and its complementary $\Lambda \setminus S_i$ is a finite union of convex set. Namely, a finite collection \mathcal{J}_i of convex set \mathcal{C}_j^i s.t. $\Lambda \setminus S_i = \cup_{j \in \mathcal{J}_i} \mathcal{C}_j^i$

Assumption 1 and an example

Assumption 1

 $\forall i \in \mathcal{I}, \ S_i = \{ \mu \in \Lambda : i^*(\mu) = i \}$ is open and its complementary $\Lambda \setminus S_i$ is a finite union of convex set. Namely, a finite collection \mathcal{J}_i of convex set \mathcal{C}_i^i s.t. $\Lambda \setminus S_i = \cup_{j \in \mathcal{J}_i} \mathcal{C}_i^i$

Example: BAI for unstructured bandit

Here $\Lambda = \{ \mu \in (0, 1)^{K} : \exists i \in [K] \text{ s.t. } \mu_i > \mu_k, \forall k \neq i \}$, and for each $i \in [K]$, $S_i = \{ \mu \in \Lambda : \mu_i > \mu_k, \forall k \neq i \}$ We can see that $\Lambda \setminus S_i = \bigcup_{j \neq i} C_j^i$, where $C_j^i = \{ \lambda \in \Lambda : \lambda_j > \lambda_i \}$ is a convex set $\forall j \neq i$

Assumption 1 and an example

Assumption 1

 $\forall i \in \mathcal{I}, \ S_i = \{ \mu \in \Lambda : i^*(\mu) = i \}$ is open and its complementary $\Lambda \setminus S_i$ is a finite union of convex set. Namely, a finite collection \mathcal{J}_i of convex set \mathcal{C}_j^i s.t. $\Lambda \setminus S_i = \cup_{j \in \mathcal{J}_i} \mathcal{C}_j^i$

Example: BAI for unstructured bandit Here $\Lambda = \{\mu \in (0,1)^K : \exists i \in [K] \text{ s.t. } \mu_i > \mu_k, \forall k \neq i\}$, and for each $i \in [K]$, $S_i = \{\mu \in \Lambda : \mu_i > \mu_k, \forall k \neq i\}$ We can see that $\Lambda \setminus S_i = \bigcup_{j \neq i} C_j^i$, where $C_j^i = \{\lambda \in \Lambda : \lambda_j > \lambda_i\}$ is a convex set $\forall j \neq i$

With Assumption 1, we define $f_j(\omega, \mu) = \inf_{\lambda \in C_j^i} \sum_{k=1}^K \omega_k d(\mu_k, \lambda_k)$ for any $(\omega, \mu) \in \mathring{\Sigma} \times S_i$ and $j \in \mathcal{J}_i$, where $\mathring{\Sigma}$ is the interior of Σ

A counterexample for Assumption $\boldsymbol{1}$

Though most pure exploration and structures satisfy **Assumption 1**, it may not hold for an arbitrary parameter set. For example,

Proposition 1.

Let $i \in \mathcal{I}$, $j \in \mathcal{J}_i$. Define for all $(\boldsymbol{\omega}, \boldsymbol{\mu}) \in \Sigma \times \mathcal{S}_i$,

$$\overline{\lambda_j(\omega,\mu)} = \arg\min_{\lambda \in cl(\mathcal{C}_j^i)} \sum_k \omega_k d(\mu_k,\lambda_k),$$
(2)

where $cl(\mathcal{C}_{j}^{i})$ is the closure of \mathcal{C}_{j}^{i} . Then under Assumption 1, $\overline{\lambda_{j}(\omega,\mu)}$ is unique for all $(\omega,\mu) \in \mathring{\Sigma} \times S_{i}$. In addition, f_{j} is continuously differentiable on $\mathring{\Sigma} \times S_{i}$, and $\forall (\omega,\mu) \in \mathring{\Sigma} \times S_{i}$,

$$\nabla_{\boldsymbol{\omega}} f_j(\boldsymbol{\omega}, \boldsymbol{\mu}) = \sum_k d(\mu_k, \overline{\lambda_j(\boldsymbol{\omega}, \boldsymbol{\mu})}_k) \boldsymbol{e}_k, \qquad (3)$$

Envelop theorem

Proposition 1.

Let $i \in \mathcal{I}$, $j \in \mathcal{J}_i$. Define for all $(\omega, \mu) \in \Sigma \times \mathcal{S}_i$,

$$\overline{\lambda_j(\omega,\mu)} = \arg\min_{\lambda \in cl(\mathcal{C}_j^i)} \sum_k \omega_k d(\mu_k,\lambda_k),$$
(2)

where cl(C_j^i) is the closure of C_j^i . Then under Assumption 1, $\overline{\lambda_j(\omega,\mu)}$ is unique for all $(\omega,\mu) \in \mathring{\Sigma} \times S_i$. In addition, f_j is continuously differentiable on $\mathring{\Sigma} \times S_i$, and $\forall (\omega,\mu) \in \mathring{\Sigma} \times S_i$,

$$\nabla_{\boldsymbol{\omega}} f_j(\boldsymbol{\omega}, \boldsymbol{\mu}) = \sum_k d(\mu_k, \overline{\lambda_j(\boldsymbol{\omega}, \boldsymbol{\mu})}_k) \boldsymbol{e}_k, \qquad (3)$$

Example (Unstructured BAI)

$$f_{j}(\omega, \mu) = \omega_{j}d(\mu_{j}, \frac{\omega_{i^{\star}}\mu_{i^{\star}} + \omega_{j}\mu_{j}}{\omega_{i^{\star}} + \omega_{j}}) + \omega_{i^{\star}}d(\mu_{i^{\star}}, \frac{\omega_{i^{\star}}\mu_{i^{\star}} + \omega_{j}\mu_{j}}{\omega_{i^{\star}} + \omega_{j}})$$

$$\nabla_{\omega}f_{j}(\omega, \mu) = d(\mu_{j}, \frac{\omega_{i^{\star}}\mu_{i^{\star}} + \omega_{j}\mu_{j}}{\omega_{i^{\star}} + \omega_{j}})\mathbf{e}_{j} + d(\mu_{i^{\star}}, \frac{\omega_{i^{\star}}\mu_{i^{\star}} + \omega_{j}\mu_{j}}{\omega_{i^{\star}} + \omega_{j}})\mathbf{e}_{i^{\star}}$$
16

Envelop theorem

Proposition 1.

Let $i \in \mathcal{I}$, $j \in \mathcal{J}_i$. Define for all $(\boldsymbol{\omega}, \boldsymbol{\mu}) \in \Sigma imes \mathcal{S}_i$,

$$\overline{\lambda_j(\omega,\mu)} = \arg\min_{\lambda \in cl(\mathcal{C}_j^i)} \sum_k \omega_k d(\mu_k,\lambda_k),$$
(2)

where cl(C_j^i) is the closure of C_j^i . Then under Assumption 1, $\overline{\lambda_j(\omega,\mu)}$ is unique for all $(\omega,\mu) \in \mathring{\Sigma} \times S_i$. In addition, f_j is continuously differentiable on $\mathring{\Sigma} \times S_i$, and $\forall (\omega,\mu) \in \mathring{\Sigma} \times S_i$,

$$\nabla_{\boldsymbol{\omega}} f_j(\boldsymbol{\omega}, \boldsymbol{\mu}) = \sum_k d(\mu_k, \overline{\lambda_j(\boldsymbol{\omega}, \boldsymbol{\mu})}_k) \boldsymbol{e}_k, \qquad (3)$$

Hence,

• Once we can solve (2), we have $\nabla_{\omega} f_j$ and f_j

Envelop theorem

Proposition 1.

Let $i \in \mathcal{I}$, $j \in \mathcal{J}_i$. Define for all $(\boldsymbol{\omega}, \boldsymbol{\mu}) \in \Sigma imes \mathcal{S}_i$,

$$\overline{\lambda_j(\omega,\mu)} = \arg\min_{\lambda \in cl(\mathcal{C}_j^i)} \sum_k \omega_k d(\mu_k,\lambda_k),$$
(2)

where cl(C_j^i) is the closure of C_j^i . Then under Assumption 1, $\overline{\lambda_j(\omega,\mu)}$ is unique for all $(\omega,\mu) \in \mathring{\Sigma} \times S_i$. In addition, f_j is continuously differentiable on $\mathring{\Sigma} \times S_i$, and $\forall (\omega,\mu) \in \mathring{\Sigma} \times S_i$,

$$\nabla_{\boldsymbol{\omega}} f_j(\boldsymbol{\omega}, \boldsymbol{\mu}) = \sum_k d(\mu_k, \overline{\lambda_j(\boldsymbol{\omega}, \boldsymbol{\mu})}_k) \boldsymbol{e}_k, \qquad (3)$$

Hence,

- Once we can solve (2), we have $\nabla_{\omega} f_j$ and f_j
- $F_{\mu} = \min_{j \in \mathcal{J}} f_j(\cdot, \mu)$ is the minimum of finite set of smooth

16

Recall that
$$C_{\psi}(\mathcal{K}) = \sup_{\substack{\mathbf{x}, \mathbf{z} \in \mathcal{K} \\ \alpha \in (0,1] \\ \mathbf{y} = \mathbf{x} + \alpha(\mathbf{z} - \mathbf{x})}} \min_{h \in \partial \psi(\mathbf{x})} \frac{1}{\alpha^2} \left[\psi(\mathbf{x}) - \psi(\mathbf{y}) + \langle \mathbf{y} - \mathbf{x}, h \rangle \right]$$

Suppose $\psi(x) = |x|$ over $\mathcal{K} = [-1, 1]$. Let $x \in (0, \frac{1}{2}), z = 1 - x$ and $\alpha = 2x$. By definition, $\partial \psi(x) = \{1\}$

Recall that
$$C_{\psi}(\mathcal{K}) = \sup_{\substack{\mathbf{x}, \mathbf{z} \in \mathcal{K} \\ \alpha \in (0,1] \\ \mathbf{y} = \mathbf{x} + \alpha(\mathbf{z} - \mathbf{x})}} \min_{h \in \partial \psi(\mathbf{x})} \frac{1}{\alpha^2} \left[\psi(\mathbf{x}) - \psi(\mathbf{y}) + \langle \mathbf{y} - \mathbf{x}, h \rangle \right]$$

Suppose $\psi(x) = |x|$ over $\mathcal{K} = [-1, 1]$. Let $x \in (0, \frac{1}{2}), z = 1 - x$ and $\alpha = 2x$. By definition, $\partial \psi(x) = \{1\}$

$$C_{\psi}(\mathcal{K}) \geq \min_{h \in \partial \psi(\mathbf{x})} \frac{1}{\alpha^2} \left[\psi(\mathbf{x}) - \psi(\mathbf{y}) + \langle \mathbf{y} - \mathbf{x}, h \rangle \right]$$

= $\frac{1}{4x^2} (|-x| - |x| + 2x) = \frac{1}{2x}.$

Hence, $\mathcal{C}_\psi(\mathcal{K}) = \infty$

From the last example, $\partial \psi(x)$ is a discontinuous set-function, and hence fails to provide a proper bound across the non-smooth point.

From the last example, $\partial \psi(x)$ is a discontinuous set-function, and hence fails to provide a proper bound across the non-smooth point. Existing FW-based works on non-smooth functions are:

- smoothing the objective function [FKM05, HK12]
- enlarging the set of differential [RCS19, CL18] (collect the set of the subdifferentials in the neighborhood)

From the last example, $\partial \psi(x)$ is a discontinuous set-function, and hence fails to provide a proper bound across the non-smooth point. Existing FW-based works on non-smooth functions are:

- smoothing the objective function [FKM05, HK12]
- enlarging the set of differential [RCS19, CL18] (collect the set of the subdifferentials in the neighborhood)

Nevertheless, they are all too **computational expensive** to solve in our problem

r-subdifferential space

Recall that $F_{\mu}(\omega) = \min_{j \in \mathcal{J}_i} f_j(\omega, \mu)$ for $\mu \in \mathcal{S}_i$, we define

 $H_{F_{\mu}}(\omega, r) = \operatorname{cov} \left\{ \nabla_{\omega} f_{j}(\omega, \mu) : j \in \mathcal{J}_{i}, f_{j}(\omega, \mu) < F_{\mu}(\omega) + r \right\}, \, \forall r \in \mathbb{R}_{+},$

where cov(S) is the convex hull of a set S.

r-subdifferential space

Recall that $F_{\mu}(\omega) = \min_{j \in \mathcal{J}_i} f_j(\omega, \mu)$ for $\mu \in \mathcal{S}_i$, we define

 $H_{F_{\mu}}(\omega, r) = \operatorname{cov} \left\{ \nabla_{\omega} f_{j}(\omega, \mu) : j \in \mathcal{J}_{i}, f_{j}(\omega, \mu) < F_{\mu}(\omega) + r \right\}, \, \forall r \in \mathbb{R}_{+},$

where cov(S) is the convex hull of a set S. The advantages include:

- $H_{F_{\mu}}(\omega, r)$ is a continuous set-mapping
- $H_{F_{\mu}}(\omega,r)$ is very easy to be computed

r-subdifferential space

Recall that $F_{\mu}(\omega) = \min_{j \in \mathcal{J}_i} f_j(\omega, \mu)$ for $\mu \in \mathcal{S}_i$, we define

 $H_{F_{\boldsymbol{\mu}}}(\boldsymbol{\omega},r) = \operatorname{cov}\left\{\nabla_{\boldsymbol{\omega}}f_{j}(\boldsymbol{\omega},\boldsymbol{\mu}): j \in \mathcal{J}_{i}, f_{j}(\boldsymbol{\omega},\boldsymbol{\mu}) < F_{\boldsymbol{\mu}}(\boldsymbol{\omega}) + r\right\}, \, \forall r \in \mathbb{R}_{+},$

where cov(S) is the convex hull of a set S. The advantages include:

- $H_{F_{\mu}}(\omega, r)$ is a continuous set-mapping
- $H_{F_{\mu}}(\omega,r)$ is very easy to be computed

Our modified FW update is

$$\begin{cases} \mathbf{z}(t+1) \leftarrow \operatorname{argmax}_{\mathbf{z} \in \mathbf{\Sigma}} \min_{h \in H_{F_{\mu}(\mathbf{x}(t), r_t)}} \langle \mathbf{z} - \mathbf{x}(t), h \rangle, \\ \mathbf{x}(t+1) \leftarrow \frac{t}{t+1} \mathbf{x}(t) + \frac{1}{t+1} \mathbf{z}(t+1) \end{cases}$$

Input: Confidence level δ , sequence $\{r_t\}_{t>1}$

Initialization: Sample each arm once and update $\omega(K), \mathbf{x}(K) = (\frac{1}{K}, \dots, \frac{1}{K})$, and $\hat{\mu}(K)$ $t \leftarrow K$

While $tF_{\hat{\mu}(t)}(\boldsymbol{\omega}(t) < \beta(\delta, t) \leftarrow \text{Stopping criteria or } \hat{\mu}(t-1) \notin \Lambda$ $IF\sqrt{\lfloor t/K \rfloor} \in \mathbb{N} \text{ or } \hat{\mu}(t-1) \notin \Lambda$, (Forced exploration) $\boldsymbol{z}(t) \leftarrow (\frac{1}{K}, \dots, \frac{1}{K})$ Else, (FW update)

$$z(t) \leftarrow \underset{z \in \Sigma}{\operatorname{argmax}} \min_{h \in H_{F_{\hat{\mu}(t-1)}}(x(t-1), r_t)} \langle z - x(t-1), h \rangle$$

Update $\mathbf{x}(t) \leftarrow \frac{t-1}{t}\mathbf{x}(t-1) + \frac{1}{t}\mathbf{z}(t)$

Sample $A_t \leftarrow \operatorname{argmax}_k x_k(t) / \omega_k(t-1)$ (ties broken arbitrarily) Update $\omega(t)$ and $\hat{\mu}(t)$

Output: $i^{\star}(\hat{\mu}(t))$

Theoretical Results

For $\gamma \in (0, \frac{1}{K})$, let $\Sigma_{\gamma} = \{ \omega \in \Sigma : \min_k \omega_k \ge \gamma \}$

Assumption 2.

For all $\mu \in \Lambda$, there exist L, D > 0 s.t

(i). $\forall j \in \mathcal{J}_{i^{\star}(\mu)}, \omega \in \Sigma, \|\nabla_{\omega} f_{j}(\omega, \mu)\|_{\infty} \leq L$ (ii). $\forall \gamma \in (0, 1/K) \text{ and } \forall j \in \mathcal{J}_{i^{\star}(\mu)}, C_{f_{i}(\cdot, \mu)}(\Sigma_{\gamma}) \leq \frac{D}{\gamma}$

For $\gamma \in (0, \frac{1}{K})$, let $\Sigma_{\gamma} = \{ \omega \in \Sigma : \min_k \omega_k \ge \gamma \}$

Assumption 2.

For all $\mu \in \Lambda$, there exist L, D > 0 s.t

(i).
$$\forall j \in \mathcal{J}_{i^{\star}(\mu)}, \omega \in \Sigma, \|\nabla_{\omega} f_{j}(\omega, \mu)\|_{\infty} \leq L$$

(ii). $\forall \gamma \in (0, 1/K) \text{ and } \forall j \in \mathcal{J}_{i^{\star}(\mu)}, \ C_{f_{i}(\cdot, \mu)}(\Sigma_{\gamma}) \leq \frac{D}{\gamma}$

We also provide a generic method to verify Assumption 2.

Asymptotic optimality of FWS

Theorem 1

Consider the FWS algorithm with a sequence $\{r_t\}_{t\geq 1}$ strictly positive reals satisfying

- $\lim_{t\to\infty} \frac{1}{t} \sum_{s=1}^t r_s = 0$,
- $\lim_{t\to\infty} tr_t = \infty$.

Under Assumptions 1, 2., the algorithm terminates in finite time a.s. and is δ -PAC. Its sample complexity τ satisfies: $\forall \mu \in \Lambda$,

$$\mathbb{P}_{\mu}\left[\overline{\lim_{\delta\to 0}}\frac{\tau}{\log(1/\delta)} \leq \, T^{\star}(\mu)\right] = 1, \text{ and } \overline{\lim_{\delta\to 0}}\frac{\mathbb{E}_{\mu}\left[\tau\right]}{\log(1/\delta)} \leq \, T^{\star}(\mu).$$

With further assumptions, we can provide **non-asymptotic** upper bound for $\mathbb{E}_{\mu}[\tau]$

Numerical Results

Averaged sample complexity at $\delta=0.01$

Averaged sample complexity at $\delta=0.01$

Experiment (iii) Lipschitz bandits

Averaged Sample complexity at $\delta = 0.01$

This is the first result for Lipschitz bandits in literatures

Related works:

- TaS [GK16]: Compute and track the optimal allocation
- LMA [Mén19]: Apply mirror ascent to update x(t)
- Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game to reach $\omega^{\star}(\mu)$

Unclear to extend the above approaches to general structures

Related works:

- TaS [GK16]: Compute and track the optimal allocation
- LMA [Mén19]: Apply mirror ascent to update x(t)
- Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game to reach $\omega^{\star}(\mu)$

Unclear to extend the above approaches to general structures Conclusion:

- FWS is computationally and statistically efficient for general pure exploration problems
- Theoretically, FWS matchs the instance-specific lower bounds
- Numerically, FWS is competitive to the state-of-art algorithms in structured bandits

Reference

- Edward Cheung and Yuying Li, Solving separable nonsmooth problems using frank-wolfe with uniform affine approximations, Proc. of IJCAI, 2018.
- Rémy Degenne, Wouter M Koolen, and Pierre Ménard, Non-asymptotic pure exploration by solving games, Proc. of NeurIPS, 2019.
- Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko, Gamification of pure exploration for linear bandits, Proc. of ICML, 2020.
- Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan, *Online convex optimization in the bandit setting: gradient descent without a gradient*, Proc. of SODA, 2005.

Aurélien Garivier and Emilie Kaufmann, *Optimal best arm identification with fixed confidence*, Proc. of COLT, 2016.