
Fast Pure Exploration via Frank-Wolfe

Po-An Wang1, Ruo-Chun Tzeng2, and Alexandre Proutiere1

Conference on Neural Information Processing Systems, 2021
1EECS, Division of Decision and Control System

2EECS, Division of Theoretical Computer Science
KTH Royal Institute of Technology

1

Pure exploration on structured
bandits

Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν1, . . . , νK), the mean of νk is µk

ν1 ν2 ν3 ν4 ν5

In round t, an agent

1. pulls arm At ∈ [K]
2. receives the reward XAt (t) ∼ νAt

Sequential sampling strategy: At ∈ Ft = σ[A1,X1, . . . ,At−1,Xt−1]

2

Stochastic Multi-Armed Bandit (MAB)

K arms (K prob. distribution ν1, . . . , νK), the mean of νk is µk

ν1 ν2 ν3 ν4 ν5

In round t, an agent

1. pulls arm At ∈ [K]
2. receives the reward XAt (t) ∼ νAt

Sequential sampling strategy: At ∈ Ft = σ[A1,X1, . . . ,At−1,Xt−1]

2

Pure exploration with fixed confidence

Goal: Identify a certain answer i?(µ) ∈ I
Example: Identify the best arm i?(µ) = argmaxk∈[K] µk

A strategy consists of

• a sampling rule At (arm to explore)
• a stopping rule τ (time to stop)
• a Fτ -measurable decision rule ı̂ ∈ I (answer to return)

We wish to minimize Eµ[τ] subject to Pµ [̂ı 6= i?(µ)] < δ

3

Pure exploration with fixed confidence

Goal: Identify a certain answer i?(µ) ∈ I
Example: Identify the best arm i?(µ) = argmaxk∈[K] µk

A strategy consists of

• a sampling rule At (arm to explore)
• a stopping rule τ (time to stop)
• a Fτ -measurable decision rule ı̂ ∈ I (answer to return)

We wish to minimize Eµ[τ] subject to Pµ [̂ı 6= i?(µ)] < δ

3

Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when
exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?

4

Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when
exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?

4

Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when
exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?

4

Lower bound [GK16]

For any good strategy,

lim inf
δ→0

Eµ[τ]
log(1δ)

≥ T ?(µ),

where T ?(µ)−1 = supω∈Σ infλ∈Alt(µ)
∑K

k=1 ωkd(µk , λk)

• Σ :K − 1 simplex
• Alt(µ) = {λ ∈ Λ : i?(λ) 6= i?(µ)}
• d(µk , λk) : KL-divergent of arm-k reward distribution under λ and µ

⇒ An optimal algorithm has a sampling strategy described by

ω?(µ) ∈ argmax
µ∈Σ

Fµ(ω),

where Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk , λk).

5

Lower bound [GK16]

For any good strategy,

lim inf
δ→0

Eµ[τ]
log(1δ)

≥ T ?(µ),

where T ?(µ)−1 = supω∈Σ infλ∈Alt(µ)
∑K

k=1 ωkd(µk , λk)

• Σ :K − 1 simplex
• Alt(µ) = {λ ∈ Λ : i?(λ) 6= i?(µ)}
• d(µk , λk) : KL-divergent of arm-k reward distribution under λ and µ

⇒ An optimal algorithm has a sampling strategy described by

ω?(µ) ∈ argmax
µ∈Σ

Fµ(ω),

where Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk , λk).

5

Generalized Likelihood Ratio Test (GLRT)

For each k ∈ [K], t ≥ 1, denote

• Nk(t) =
∑t

s=1 1{As = k},
• ωk(t) = Nk(t)/t,
• µ̂k(t) =

∑t
s=1 Xk(s)1{As = k}/Nk(t) (when Nk(t) > 0),

where Xk(s) is the reward by pulling arm k at time s.

GLRT is the stopping rule s.t.
τ = inf{t ≥ 1 : tFµ̂(t)(ω(t)) ≥ β(t, δ)}, where β(t, δ) satisfies:

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ [i?(µ̂(t)) 6= i?(µ)] ≤ δ) ,

∃c1(Λ), c2(Λ) > 0 : ∀t ≥ c1(Λ), β(t, δ) ≤ log
(c2(Λ)t

δ

)
.

Many literatures[GK16, KK18, JP20, Mén19] provide such β(t, δ)

6

Generalized Likelihood Ratio Test (GLRT)

For each k ∈ [K], t ≥ 1, denote

• Nk(t) =
∑t

s=1 1{As = k},
• ωk(t) = Nk(t)/t,
• µ̂k(t) =

∑t
s=1 Xk(s)1{As = k}/Nk(t) (when Nk(t) > 0),

where Xk(s) is the reward by pulling arm k at time s.
GLRT is the stopping rule s.t.
τ = inf{t ≥ 1 : tFµ̂(t)(ω(t)) ≥ β(t, δ)}, where β(t, δ) satisfies:

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ [i?(µ̂(t)) 6= i?(µ)] ≤ δ) ,

∃c1(Λ), c2(Λ) > 0 : ∀t ≥ c1(Λ), β(t, δ) ≤ log
(c2(Λ)t

δ

)
.

Many literatures[GK16, KK18, JP20, Mén19] provide such β(t, δ)

6

Generalized Likelihood Ratio Test (GLRT)

For each k ∈ [K], t ≥ 1, denote

• Nk(t) =
∑t

s=1 1{As = k},
• ωk(t) = Nk(t)/t,
• µ̂k(t) =

∑t
s=1 Xk(s)1{As = k}/Nk(t) (when Nk(t) > 0),

where Xk(s) is the reward by pulling arm k at time s.
GLRT is the stopping rule s.t.
τ = inf{t ≥ 1 : tFµ̂(t)(ω(t)) ≥ β(t, δ)}, where β(t, δ) satisfies:

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ [i?(µ̂(t)) 6= i?(µ)] ≤ δ) ,

∃c1(Λ), c2(Λ) > 0 : ∀t ≥ c1(Λ), β(t, δ) ≤ log
(c2(Λ)t

δ

)
.

Many literatures[GK16, KK18, JP20, Mén19] provide such β(t, δ)

6

To reach the optimality

Challenges for sampling rules:

(i). µ is unknown initially
(ii). No oracle for maxω∈Σ infλ∈Alt(µ)

∑K
k=1 ωkd(µk , λk) in

general

Previous works solve (i). by using forced exploration
[GK16, Mén19] or building a confidence interval [DKM19]
For (ii)., Previous works either solve maxmini program for a single
problem or converge to the saddle with overly conservative
approach[Mén19, DKM19]

7

To reach the optimality

Challenges for sampling rules:

(i). µ is unknown initially
(ii). No oracle for maxω∈Σ infλ∈Alt(µ)

∑K
k=1 ωkd(µk , λk) in

general

Previous works solve (i). by using forced exploration
[GK16, Mén19] or building a confidence interval [DKM19]

For (ii)., Previous works either solve maxmini program for a single
problem or converge to the saddle with overly conservative
approach[Mén19, DKM19]

7

To reach the optimality

Challenges for sampling rules:

(i). µ is unknown initially
(ii). No oracle for maxω∈Σ infλ∈Alt(µ)

∑K
k=1 ωkd(µk , λk) in

general

Previous works solve (i). by using forced exploration
[GK16, Mén19] or building a confidence interval [DKM19]
For (ii)., Previous works either solve maxmini program for a single
problem or converge to the saddle with overly conservative
approach[Mén19, DKM19]

7

Frank-Wolfe based sampling (FWS)

Best challenger (BC) in unstructured bandits [GK16, Mén19]

Let i? = i?(µ) and Alt(µ) = ∪j 6=i?{λ ∈ Λ : λj ≥ λi?}, then
Fµ(ω) = minj 6=i? fj(ω,µ), where

fj(ω,µ) = inf
λj≥λi?

K∑
k=1

ωkd(µk , λk)

= ωjd(µj ,
ωi?µi? + ωjµj
ωi? + ωj

) + ωi?d(µi? ,
ωi?µi? + ωjµj
ωi? + ωj

)

Also, ∇ωfj(ω,µ) = d(µj ,
ωi?µi? +ωjµj
ωi? +ωj

)ej + d(µi? ,
ωi?µi? +ωjµj
ωi? +ωj

)e i?

After pulling each arm once, BC repeatedly does:
1. Assign Ct ← argminj 6=i?(µ̂(t)) fj(ω(t), µ̂(t))
2. Play

At ←
{
ı̂ = i?(µ̂(t)), if d(µj ,

ωı̂µı̂+ωjµj
ωı̂+ωj

) > d(µı̂, ωı̂µı̂+ωjµj
ωı̂+ωj

)
Ct , otherwise.

8

Frank-Wolfe algorithm (FW)

In the view of updating ω(t), BC corresponds to FW iteration as if
the objective function is smooth (unfortunately, it is not)

FW for maxx∈Σ F (x) when F is smooth
Take x(1) ∈ Σ arbitrarily
For t = 1, . . . ,T do:

1. z(t + 1)← argmaxz∈Σ〈z,∇F (x(t))〉

2. x(t + 1)← t
t+1x(t) + 1

t+1z(t + 1)

9

Curvature

For a compact set K and a concave function ψ : K 7→ R, we define

Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉] (1)

When K is a convex domain, a finite curvature permits the
convergence of FW (see e.g. [Jag13]). The intuition is that Cψ(K)
provides a controlled bound for each iteration as

ψ(x) + 〈y − x, h〉 − Cψ(K)
α2

≤ ψ(y) ≤ ψ(x) + 〈y − x, h〉,

where h ∈ ∂ψ(x) is the one attaining minimum in (1)

10

Curvature

For a compact set K and a concave function ψ : K 7→ R, we define

Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉] (1)

When K is a convex domain, a finite curvature permits the
convergence of FW (see e.g. [Jag13]). The intuition is that Cψ(K)
provides a controlled bound for each iteration as

ψ(x) + 〈y − x, h〉 − Cψ(K)
α2

≤ ψ(y) ≤ ψ(x) + 〈y − x, h〉,

where h ∈ ∂ψ(x) is the one attaining minimum in (1)

10

Why does BC fail to reach the optimal allocation?

BC faces three issues:

(i). Fµ is not smooth
(ii). Each fj has an unbounded curvature close to the boundary

of Σ
(iii). µ is unknown initially

We devise a simple algorithm (FW-based) to track
x(t) t→∞−−−→ ω?(µ) by circumventing these issues.

11

Why does BC fail to reach the optimal allocation?

BC faces three issues:

(i). Fµ is not smooth
(ii). Each fj has an unbounded curvature close to the boundary

of Σ
(iii). µ is unknown initially

We devise a simple algorithm (FW-based) to track
x(t) t→∞−−−→ ω?(µ) by circumventing these issues.

11

Non-smoothness issue

For (i). Fµ is not smooth

• Under mild assumption, we show Fµ is the minimum of a finite
number of smooth concave functions fj by envelop theorem

• Leveraging this fact, we have a novel and computational
efficient construction which continuously approximates the
non-smooth points

12

Non-smoothness issue

For (i). Fµ is not smooth

• Under mild assumption, we show Fµ is the minimum of a finite
number of smooth concave functions fj by envelop theorem

• Leveraging this fact, we have a novel and computational
efficient construction which continuously approximates the
non-smooth points

12

Non-smoothness issue

For (i). Fµ is not smooth

• Under mild assumption, we show Fµ is the minimum of a finite
number of smooth concave functions fj by envelop theorem

• Leveraging this fact, we have a novel and computational
efficient construction which continuously approximates the
non-smooth points

12

Unbounded curvature and unknown µ

The remaining issues,

(ii). Each fj has an unbounded curvature close to the
boundary of Σ

(iiii). µ is unknown initially,

are solved by a single trick

Let updated direction z(t) cover e1, . . . , eK sufficiently often so
that the tracked allocation, x(t), is kept away from the boundary
and each action is forced to be played frequently enough

13

Unbounded curvature and unknown µ

The remaining issues,

(ii). Each fj has an unbounded curvature close to the
boundary of Σ

(iiii). µ is unknown initially,

are solved by a single trick

Let updated direction z(t) cover e1, . . . , eK sufficiently often so
that the tracked allocation, x(t), is kept away from the boundary
and each action is forced to be played frequently enough

13

Assumption 1 and an example

Assumption 1
∀i ∈ I, Si = {µ ∈ Λ : i?(µ) = i} is open and its complementary
Λ \ Si is a finite union of convex set. Namely, a finite collection
Ji of convex set C i

j s.t. Λ \ Si = ∪j∈JiC i
j

Example: BAI for unstructured bandit
Here Λ = {µ ∈ (0, 1)K : ∃i ∈ [K] s.t. µi > µk , ∀k 6= i}, and for
each i ∈ [K], Si = {µ ∈ Λ : µi > µk , ∀k 6= i}
We can see that Λ \ Si = ∪j 6=iC i

j , where C i
j = {λ ∈ Λ : λj > λi}

is a convex set ∀j 6= i

With Assumption 1, we define
fj(ω,µ) = infλ∈Ci

j

∑K
k=1 ωkd(µk , λk) for any (ω,µ) ∈ Σ̊× Si and

j ∈ Ji , where Σ̊ is the interior of Σ

14

Assumption 1 and an example

Assumption 1
∀i ∈ I, Si = {µ ∈ Λ : i?(µ) = i} is open and its complementary
Λ \ Si is a finite union of convex set. Namely, a finite collection
Ji of convex set C i

j s.t. Λ \ Si = ∪j∈JiC i
j

Example: BAI for unstructured bandit
Here Λ = {µ ∈ (0, 1)K : ∃i ∈ [K] s.t. µi > µk , ∀k 6= i}, and for
each i ∈ [K], Si = {µ ∈ Λ : µi > µk , ∀k 6= i}
We can see that Λ \ Si = ∪j 6=iC i

j , where C i
j = {λ ∈ Λ : λj > λi}

is a convex set ∀j 6= i

With Assumption 1, we define
fj(ω,µ) = infλ∈Ci

j

∑K
k=1 ωkd(µk , λk) for any (ω,µ) ∈ Σ̊× Si and

j ∈ Ji , where Σ̊ is the interior of Σ

14

Assumption 1 and an example

Assumption 1
∀i ∈ I, Si = {µ ∈ Λ : i?(µ) = i} is open and its complementary
Λ \ Si is a finite union of convex set. Namely, a finite collection
Ji of convex set C i

j s.t. Λ \ Si = ∪j∈JiC i
j

Example: BAI for unstructured bandit
Here Λ = {µ ∈ (0, 1)K : ∃i ∈ [K] s.t. µi > µk , ∀k 6= i}, and for
each i ∈ [K], Si = {µ ∈ Λ : µi > µk , ∀k 6= i}
We can see that Λ \ Si = ∪j 6=iC i

j , where C i
j = {λ ∈ Λ : λj > λi}

is a convex set ∀j 6= i

With Assumption 1, we define
fj(ω,µ) = infλ∈Ci

j

∑K
k=1 ωkd(µk , λk) for any (ω,µ) ∈ Σ̊× Si and

j ∈ Ji , where Σ̊ is the interior of Σ
14

A counterexample for Assumption 1

Though most pure exploration and structures satisfy Assumption
1, it may not hold for an arbitrary parameter set. For example,

I

s ,

Als ,

0 I

15

Envelop theorem

Proposition 1.
Let i ∈ I, j ∈ Ji . Define for all (ω,µ) ∈ Σ× Si ,

λj(ω,µ) = arg min
λ∈cl(Ci

j)

∑
k
ωkd(µk , λk), (2)

where cl(C i
j) is the closure of C i

j . Then under Assumption 1,
λj(ω,µ) is unique for all (ω,µ) ∈ Σ̊× Si . In addition, fj is
continuously differentiable on Σ̊× Si , and ∀(ω,µ) ∈ Σ̊× Si ,

∇ωfj(ω,µ) =
∑

k
d(µk ,λj(ω,µ)k)ek , (3)

16

Envelop theorem

Proposition 1.
Let i ∈ I, j ∈ Ji . Define for all (ω,µ) ∈ Σ× Si ,

λj(ω,µ) = arg min
λ∈cl(Ci

j)

∑
k
ωkd(µk , λk), (2)

where cl(C i
j) is the closure of C i

j . Then under Assumption 1,
λj(ω,µ) is unique for all (ω,µ) ∈ Σ̊× Si . In addition, fj is
continuously differentiable on Σ̊× Si , and ∀(ω,µ) ∈ Σ̊× Si ,

∇ωfj(ω,µ) =
∑

k
d(µk ,λj(ω,µ)k)ek , (3)

Example (Unstructured BAI)

fj(ω,µ) = ωjd(µj ,
ωi?µi? +ωjµj
ωi? +ωj

) + ωi?d(µi? ,
ωi?µi? +ωjµj
ωi? +ωj

)
∇ωfj(ω,µ) = d(µj ,

ωi?µi? +ωjµj
ωi? +ωj

)ej + d(µi? ,
ωi?µi? +ωjµj
ωi? +ωj

)e i? 16

Envelop theorem

Proposition 1.
Let i ∈ I, j ∈ Ji . Define for all (ω,µ) ∈ Σ× Si ,

λj(ω,µ) = arg min
λ∈cl(Ci

j)

∑
k
ωkd(µk , λk), (2)

where cl(C i
j) is the closure of C i

j . Then under Assumption 1,
λj(ω,µ) is unique for all (ω,µ) ∈ Σ̊× Si . In addition, fj is
continuously differentiable on Σ̊× Si , and ∀(ω,µ) ∈ Σ̊× Si ,

∇ωfj(ω,µ) =
∑

k
d(µk ,λj(ω,µ)k)ek , (3)

Hence,

• Once we can solve (2), we have ∇ωfj and fj

• Fµ = minj∈J fj(·,µ) is the minimum of finite set of smooth
functions

16

Envelop theorem

Proposition 1.
Let i ∈ I, j ∈ Ji . Define for all (ω,µ) ∈ Σ× Si ,

λj(ω,µ) = arg min
λ∈cl(Ci

j)

∑
k
ωkd(µk , λk), (2)

where cl(C i
j) is the closure of C i

j . Then under Assumption 1,
λj(ω,µ) is unique for all (ω,µ) ∈ Σ̊× Si . In addition, fj is
continuously differentiable on Σ̊× Si , and ∀(ω,µ) ∈ Σ̊× Si ,

∇ωfj(ω,µ) =
∑

k
d(µk ,λj(ω,µ)k)ek , (3)

Hence,

• Once we can solve (2), we have ∇ωfj and fj
• Fµ = minj∈J fj(·,µ) is the minimum of finite set of smooth
functions

16

Non-smooth point may cause infinite curvature

Recall that Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉]

Suppose ψ(x) = |x | over K = [−1, 1]. Let x ∈ (0, 12), z = 1− x
and α = 2x . By definition, ∂ψ(x) = {1}

Cψ(K) ≥ min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉]

= 1
4x2 (|−x | − |x |+ 2x) = 1

2x .

Hence, Cψ(K) =∞

17

Non-smooth point may cause infinite curvature

Recall that Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉]

Suppose ψ(x) = |x | over K = [−1, 1]. Let x ∈ (0, 12), z = 1− x
and α = 2x . By definition, ∂ψ(x) = {1}

Cψ(K) ≥ min
h∈∂ψ(x)

1
α2

[ψ(x)− ψ(y) + 〈y − x, h〉]

= 1
4x2 (|−x | − |x |+ 2x) = 1

2x .

Hence, Cψ(K) =∞

17

Existing FW works for non-smooth functions

From the last example, ∂ψ(x) is a discontinuous set-function, and
hence fails to provide a proper bound across the non-smooth point.

Existing FW-based works on non-smooth functions are:

• smoothing the objective function [FKM05, HK12]
• enlarging the set of differential [RCS19, CL18] (collect the set
of the subdifferentials in the neighborhood)

Nevertheless, they are all too computational expensive to solve
in our problem

18

Existing FW works for non-smooth functions

From the last example, ∂ψ(x) is a discontinuous set-function, and
hence fails to provide a proper bound across the non-smooth point.
Existing FW-based works on non-smooth functions are:

• smoothing the objective function [FKM05, HK12]
• enlarging the set of differential [RCS19, CL18] (collect the set
of the subdifferentials in the neighborhood)

Nevertheless, they are all too computational expensive to solve
in our problem

18

Existing FW works for non-smooth functions

From the last example, ∂ψ(x) is a discontinuous set-function, and
hence fails to provide a proper bound across the non-smooth point.
Existing FW-based works on non-smooth functions are:

• smoothing the objective function [FKM05, HK12]
• enlarging the set of differential [RCS19, CL18] (collect the set
of the subdifferentials in the neighborhood)

Nevertheless, they are all too computational expensive to solve
in our problem

18

r-subdifferential space

Recall that Fµ(ω) = minj∈Ji fj(ω,µ) for µ ∈ Si , we define

HFµ(ω, r) = cov {∇ωfj(ω,µ) : j ∈ Ji , fj(ω,µ) < Fµ(ω) + r} , ∀r ∈ R+,

where cov(S) is the convex hull of a set S.

The advantages include:

• HFµ(ω, r) is a continuous set-mapping
• HFµ(ω, r) is very easy to be computed

Our modified FW update is z(t + 1)← argmaxz∈Σ minh∈HFµ(x(t),rt)〈z − x(t), h〉,
x(t + 1)← t

t+1x(t) + 1
t+1z(t + 1)

19

r-subdifferential space

Recall that Fµ(ω) = minj∈Ji fj(ω,µ) for µ ∈ Si , we define

HFµ(ω, r) = cov {∇ωfj(ω,µ) : j ∈ Ji , fj(ω,µ) < Fµ(ω) + r} , ∀r ∈ R+,

where cov(S) is the convex hull of a set S.
The advantages include:

• HFµ(ω, r) is a continuous set-mapping
• HFµ(ω, r) is very easy to be computed

Our modified FW update is z(t + 1)← argmaxz∈Σ minh∈HFµ(x(t),rt)〈z − x(t), h〉,
x(t + 1)← t

t+1x(t) + 1
t+1z(t + 1)

19

r-subdifferential space

Recall that Fµ(ω) = minj∈Ji fj(ω,µ) for µ ∈ Si , we define

HFµ(ω, r) = cov {∇ωfj(ω,µ) : j ∈ Ji , fj(ω,µ) < Fµ(ω) + r} , ∀r ∈ R+,

where cov(S) is the convex hull of a set S.
The advantages include:

• HFµ(ω, r) is a continuous set-mapping
• HFµ(ω, r) is very easy to be computed

Our modified FW update is z(t + 1)← argmaxz∈Σ minh∈HFµ(x(t),rt)〈z − x(t), h〉,
x(t + 1)← t

t+1x(t) + 1
t+1z(t + 1)

19

FWS

Input: Confidence level δ, sequence {rt}t≥1

Initialization: Sample each arm once and update ω(K), x(K) = (1
K , . . . ,

1
K), and µ̂(K)

t ←K

While tFµ̂(t)(ω(t) < β(δ, t) ←Stopping criteria or µ̂(t − 1) /∈ Λ

IF
√
bt/Kc ∈ N or µ̂(t − 1) /∈ Λ, (Forced exploration) z(t)← (1

K , . . . ,
1
K)

Else, (FW update)

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1) (x(t−1),rt)

〈z − x(t − 1), h〉

Update x(t)← t−1
t x(t − 1) + 1

t z(t)

Sample At ← argmaxk xk (t)/ωk (t − 1) (ties broken arbitrarily)
Update ω(t) and µ̂(t)

Output: i?(µ̂(t))

20

Theoretical Results

Assumption 2

For γ ∈ (0, 1
K), let Σγ = {ω ∈ Σ : mink ωk ≥ γ}

Assumption 2.
For all µ ∈ Λ, there exist L,D > 0 s.t

(i). ∀j ∈ Ji?(µ),ω ∈ Σ, ‖∇ωfj(ω,µ)‖∞ ≤ L
(ii). ∀γ ∈ (0, 1/K) and ∀j ∈ Ji?(µ), Cfj (·,µ)(Σγ) ≤ D

γ

We also provide a generic method to verify Assumption 2.

21

Assumption 2

For γ ∈ (0, 1
K), let Σγ = {ω ∈ Σ : mink ωk ≥ γ}

Assumption 2.
For all µ ∈ Λ, there exist L,D > 0 s.t

(i). ∀j ∈ Ji?(µ),ω ∈ Σ, ‖∇ωfj(ω,µ)‖∞ ≤ L
(ii). ∀γ ∈ (0, 1/K) and ∀j ∈ Ji?(µ), Cfj (·,µ)(Σγ) ≤ D

γ

We also provide a generic method to verify Assumption 2.

21

Asymptotic optimality of FWS

Theorem 1
Consider the FWS algorithm with a sequence {rt}t≥1 strictly
positive reals satisfying

• limt→∞
1
t
∑t

s=1 rs = 0,
• limt→∞ trt =∞.

Under Assumptions 1, 2., the algorithm terminates in finite time
a.s. and is δ-PAC. Its sample complexity τ satisfies: ∀µ ∈ Λ,

Pµ
[

lim
δ→0

τ

log(1/δ) ≤ T ?(µ)
]

= 1, and lim
δ→0

Eµ [τ]
log(1/δ) ≤ T ?(µ).

With further assumptions, we can provide non-asymptotic upper
bound for Eµ[τ]

22

Numerical Results

Experiment (i) Unstructured bandits

Averaged sample complexity at δ = 0.01

Bernoulli Gaussian

23

Experiment (ii) Linear bandits

Averaged sample complexity at δ = 0.01

BAI ThresholdingBandit

24

Experiment (iii) Lipschitz bandits

Averaged Sample complexity at δ = 0.01

Experiment 1 Experiment 2

This is the first result for Lipschitz bandits in literatures

25

Related work and conclusion

Related works:

• TaS [GK16]: Compute and track the optimal allocation
• LMA [Mén19]: Apply mirror ascent to update x(t)
• Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach ω?(µ)

Unclear to extend the above approaches to general structures

Conclusion:

• FWS is computationally and statistically efficient for general
pure exploration problems

• Theoretically, FWS matchs the instance-specific lower bounds
• Numerically, FWS is competitive to the state-of-art algorithms
in structured bandits

26

Related work and conclusion

Related works:

• TaS [GK16]: Compute and track the optimal allocation
• LMA [Mén19]: Apply mirror ascent to update x(t)
• Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach ω?(µ)

Unclear to extend the above approaches to general structures
Conclusion:

• FWS is computationally and statistically efficient for general
pure exploration problems

• Theoretically, FWS matchs the instance-specific lower bounds
• Numerically, FWS is competitive to the state-of-art algorithms
in structured bandits

26

Reference

Edward Cheung and Yuying Li, Solving separable nonsmooth
problems using frank-wolfe with uniform affine approximations,
Proc. of IJCAI, 2018.
Rémy Degenne, Wouter M Koolen, and Pierre Ménard,
Non-asymptotic pure exploration by solving games, Proc. of
NeurIPS, 2019.
Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal
Valko, Gamification of pure exploration for linear bandits,
Proc. of ICML, 2020.
Abraham D Flaxman, Adam Tauman Kalai, and H Brendan
McMahan, Online convex optimization in the bandit setting:
gradient descent without a gradient, Proc. of SODA, 2005.

Aurélien Garivier and Emilie Kaufmann, Optimal best arm
identification with fixed confidence, Proc. of COLT, 2016.
Elad Hazan and Satyen Kale, Projection-free online learning,
Proc. of ICML, 2012.
Martin Jaggi, Revisiting frank-wolfe: Projection-free sparse
convex optimization, Proc. of ICML, 2013.

Marc Jourdan, Mojmír Mutnỳ, Johannes Kirschner, and
Andreas Krause, Efficient pure exploration for combinatorial
bandits with semi-bandit feedback, Proc. of ALT, 2021.
Yassir Jedra and Alexandre Proutiere, Optimal best-arm
identification in linear bandits, Proc. of NeurIPS, 2020.
Emilie Kaufmann and Wouter Koolen, Mixture martingales
revisited with applications to sequential tests and confidence
intervals, arXiv preprint arXiv:1811.11419 (2018).

Pierre Ménard, Gradient ascent for active exploration in bandit
problems, arXiv (2019).

Sathya N Ravi, Maxwell D Collins, and Vikas Singh, A
deterministic nonsmooth frank wolfe algorithm with coreset
guarantees, Informs Journal on Optimization (2019).

Xuedong Shang, Linbai: Gamification of pure exploration for
linear bandits, https://github.com/xuedong/LinBAI.jl,
2021, [Online; accessed 09-May-2021].

27

https://github.com/xuedong/LinBAI.jl

	Pure exploration on structured bandits
	Frank-Wolfe based sampling (FWS)
	Theoretical Results
	Numerical Results

