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Introduction: Rayleigh quotient maximization over T (1/2)

Given a symmetric matrix A ∈ Rn×n and a feasible set T ⊆ Rn, find any

u? ∈ argmax

{
xTAx

xTx
: x ∈ T \{0}

}
.

Examples

densest subgraph [1] 2-community detection [9] PCA [7]

T = {0, 1}n T = {−1, 1}n T = Rn
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Introduction: Rayleigh quotient maximization over T (2/2)

Given a symmetric A ∈ Rn×n and T ⊆ Rn, find any

u? ∈ argmax

{
xTAx

xTx
: x ∈ T \{0}

}
.

Discrete T : graph applications

Questions of interests:

I What structures does u? capture?

I Is u? polynomial-time tractable?

I How well can we approximate u??

T = Rn: numerical linear algebra

Questions of interests:

I How to evaluate the quality of u??

I How well can we approximate u?

under computational limitations?
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Contributions

Given a symmetric A ∈ Rn×n and T ⊆ Rn, find any

u? ∈ argmax

{
xTAx

xTx
: x ∈ T \{0}

}
.

Part I - discrete T
Studied a signed graph application.

I u? captures antagonistic patterns

I known to be APX-hard

I a provable approximation algorithm

Part II - T = Rn

Improved analysis of a numerical solver

I for the multiplicative gap R(û)

I under memory-limited and
pass-limited setting

(Part I) Tzeng et al. ”Discovering conflicting groups in signed networks.” In Proc. of NeurIPS 2020.

(Part II) Tzeng et al. ”Improved analysis of randomized SVD for top-eigenvector approximation.” In

Proc. of AISTATS 2022.
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Part I - an application in signed graphs

Given a symmetric A ∈ Rn×n and T ⊆ Rn, find any

u? ∈ argmax

{
xTAx

xTx
: x ∈ T \{0}

}
.

Part I - discrete T
Studied a signed graph application.

I u? captures antagonistic patterns

I known to be APX-hard

I a provable approximation algorithm

Part II - T = Rn

Improved analysis of a numerical solver

I for the multiplicative gap R(û)

I under memory-limited and
pass-limited setting

(Part I) Tzeng et al. ”Discovering conflicting groups in signed networks.” In Proc. of NeurIPS 2020.

(Part II) Tzeng et al. ”Improved analysis of randomized SVD for top-eigenvector approximation.” In

Proc. of AISTATS 2022.
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Conflicting group detection in signed graphs (1/8)

(Bonchi et al. 2019) 2-conflicting group detection

Given a signed adjacency matrix A ∈ {−1, 0, 1}n×n, the 2-conflicting groups [3] are
identified by the signs of

u? ∈ argmax

{
xTAx

xTx
: x ∈ {−1, 0, 1}n\{0}

}
(1)

Ai ,jxixj = 1 :

+ intra-group edges

− inter-group edges

Ai ,jxixj = −1 :

− intra-group edges

+ inter-group edges

antagonistic property:
intra-group: mostly +
inter-group: mostly −
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Conflicting group detection in signed graphs (2/8)

(Bonchi et al. 2019) 2-conflicting group detection

Given a signed adjacency matrix A ∈ {−1, 0, 1}n×n, the 2-conflicting groups [3] are
identified by the signs of

u? ∈ argmax

{
xTAx

xTx
: x ∈ {−1, 0, 1}n\{0}

}
(1)

Hardness result of (1)

NP-hard: independently
proven by

APX-hard proven by
(Bhaskara et al. 2012)

(Bonchi et al. 2019)
reduction from Correla-
tion Clustering

reduction from
Max k-AND

reduction from
ratio version of Unique
Games Conjecture

version 1 version 2
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Conflicting group detection in signed graphs (3/8)

(Bonchi et al. 2019) 2-conflicting group detection

Given a signed adjacency matrix A ∈ {−1, 0, 1}n×n, the 2-conflicting groups [3] are
identified by the signs of

u? ∈ argmax

{
xTAx

xTx
: x ∈ {−1, 0, 1}n\{0}

}
(1)

Approximation algorithms

SDP-based (Bhaskara et al. 2012)

I general: Õ(n1/3)

I bipartite: Õ(n1/4) (gap instance)

Eigenvector-based

I (Bonchi et al. 2019) O(n1/2)

I (Tzeng et al. 2020) Ω(n1/2)
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Conflicting group detection in signed graphs (4/8)

(Tzeng et al. 2020) formulation of k-conflicting group

k-conflicting groups are identified by the optimal solution to

max
X∈{0,1}n×k\{0}

Xi,:∈{0,eT1 ,··· ,eTk },∀i∈[n]

∑
(i ,j):〈Xi,:,Xj,:〉=1 Ai ,j + 1

k−1

∑
(i ,j):〈Xi,:,Xj,:〉=0 Ai ,j

Tr(XTX)
.

(i) equally-sized groups

(ii) uniform edge density

intra-group

inter-group

Intuition: under (i)(ii), # inter-group edge ≈ (k − 1)× # intra-group edge
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Conflicting group detection in signed graphs (5/8)

(Tzeng et al. 2020) an equivalent objective of k-conflicting group

max
Y∈Rn×(k−1)\{0}

Tr(YTAY)

Tr(YTY)
subject to Yi ,j =


cj(k − j) if i ∈ Sj

0 if i ∈ ∪j−1
h=1Sh or i /∈ ∪h∈[k]Sh

−cj if i ∈ ∪kh=j+1Sh

,

(2)
where {cj}j∈[k−1] are fixed constants, and S1, · · · ,Sk are any k disjoint groups.

(Tzeng et al. 2020) a sequential algorithm called SCG

Suppose S1, · · · , Sj−1 are found, we find Sj = {i ∈ [n] : u?i = k − j} by solving

u? ∈ argmax

{
xTA(j−1)x

xTx
: x ∈ {−1, 0, k − j}n\{0}

}
, (3)

where A(j−1) is the adjacency matrix after removing ∪h∈[j−1]Sh and A(0) = A.

=
k−1∑
j=1

‖Y:,j‖2
F

‖Y‖2
F

YT
:,jA

(j−1)Y:,j

YT
:,jY:,j
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Conflicting group detection in signed graphs (6/8)

(Tzeng et al. 2020) The subproblem in SCG

Let q ∈ [k − 1] and A ∈ {0, 1}n×n be the (modified) adjacency matrix.

u? ∈ argmax

{
xTAx

xTx
: x ∈ {−1, 0, q}n\{0}

}
. (3)

Solving (3): approximation algorithms

Eigenvector-based: let u be the leading eigenvector of A.

I randomized: O(qn1/2)-approx generalizes (Bonchi et al. 2019)

ũi =

{
q · Bernoulli(|ui |) if ui > 0

−1 · Bernoulli(|ui |) if ui < 0

I deterministic:
−1 0 q

entries of u sorted in ↑ order
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Conflicting group detection in signed graphs (7/8)

I Real-world networks:
Bitcoin WikiVote Referendum Slashdot WikiConflict Epinions Wikipolitics

|V | 5 881 7 115 10 884 82 140 116 717 131 580 138 587
|E | 21 492 100 693 251 406 500 481 2 026 646 711 210 715 883
|E−|/|E | 0.2 0.2 0.1 0.2 0.6 0.2 0.1

SCG-MA 14.6 45.5 84.9 37.8 102.6 88.8 57.5
SCG-R 5.0 9.7 39.8 7.3 16.2 39.4 5.5
KOCG [4] 4.4 5.5 8.8 2.6 4.5 8.7 4.8
SPONGE-k [5] 5.0 15.8 41.5 — — — —
SPONGE-(k+1) [5] 0.8 1.0 1.0 — — — —

I Synthetic:

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(a) F1-Score vs 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

200

Po
la

rit
y

(b) Polarity vs 

SCG-MA
SCG-R
KOCG
SPONGE-k
SPONGE-(k+1)
GroundTruth

12



Conflicting group detection in signed graphs (8/8)

Future work
I Can we improve the approximation guarantee to (3)?

u? ∈ argmax

{
xTAx

xTx
: x ∈ {−1, 0, q}n\{0}

}
. (3)

I Can we design provable algorithm for k-conflicting group detection, (2)?

I What is the fundamental limit of the problem in synthetic model?

I Does our algorithm work well in sparse graphs?
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Part II - an improved analysis for a numerical solver

Given a symmetric A ∈ Rn×n and T ⊆ Rn, find any

u? ∈ argmax

{
xTAx

xTx
: x ∈ T \{0}

}
.

Part I - discrete T
Studied a signed graph application.

I u? captures antagonistic patterns

I known to be APX-hard

I a provable approximation algorithm

Part II - T = Rn

Improved analysis of a numerical solver

I for the multiplicative gap R(û)

I under memory-limited and
pass-limited setting

(Part I) Tzeng et al. ”Discovering conflicting groups in signed networks.” In Proc. of NeurIPS 2020.

(Part II) Tzeng et al. ”Improved analysis of randomized SVD for top-eigenvector approximation.” In

Proc. of AISTATS 2022.
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Improved analysis of Randomized SVD (1/8)

Our metric of interest: multiplicative gap R(·)
Given a symmetric A ∈ Rn×n with the largest eigenpair (λ1,u1), λ1 > 0, define

R(û) = λ−1
1

ûTAû

ûT û

Prior: Õ(n)-space numerical solvers

For any A < 0, w.h.p.

q
o(ln n)-pass Ω(ln n)-pass

no guarantee R(û) = Ω(1)

Our analysis of Randomized SVD

For any A < 0, w.h.p.

q
o(ln n)-pass Ω(ln n)-pass

R(û) = Ω
((

ln n
n

) 1
2q+1

)
R(û) = Ω(1)

For some indefinite A, w.h.p.

q
o(ln n)-pass Ω(ln n)-pass

R(û) = Ω
((

ln n
n

) 1
2q+1

)
R(û) = Ω(1)

state-of-the-art: for any A < 0,

Randomized SVD [6]: R(û) ≥ 1−O(ln n/q)

Block Krylov [8]: R(û) ≥ 1−O((ln n/q)2)

[10] R(û) = Θ(1) impossible unless q = Ω(ln n)

the 2-conflicitng group algo by [3] becomes O(R(û)−1n1/2)-approxusage
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Improved analysis of Randomized SVD (2/8)

Intepreting Randomized SVD [6] for top-eigenvector approximation

Algorithm: RSVD (A, q, d)

1 Y ← AqS where S ∼ N (0, 1)n×d ;
2 Y = QR;

3 B← QTAQ;
4 û = Q u1(B);
5 return û;

(Step 1: line 1)
Y:,j = AqS:,j =

∑n
i=1 λ

q
i (uT

i S:,j)ui , ∀j ∈ [d ]

(Step 2: line 2-4)
û = argmax{vTAv : v ∈ range(Y) ∩ Sn−1}

Fact: E[(uT
1 S:,j)

2] = · · · = E[(uT
n S:,j)

2]

Effect of q ↑:
Y:,j align more to eigenspace of λ1

Effect of d ↑:
(i) ↑ the concentration around E[R(Y:,j)]
(ii) ↑ E[R(û)] (we make this explicit)

(q+1)-pass O(nd)-space

Recall: R(û) = λ−1
1

ûT Aû
ûT û
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Improved analysis of Randomized SVD (3/8)

(Theorem 1) For A < 0, R(û) =
(
Ω
(
d
n

)) 1
2q+1 w.p. at least 1− e−Ω(d).

Our technique: a reduction to random projection length

R(û) = max
a∈Sd−1

∑
i∈[n] α

2q+1
i 〈STui , a〉2∑

i∈[n] α
2q
i 〈STui , a〉2

,

where αi = λi
λ1
, ∀i ∈ [n].

⇒ cos2 θ(u1,S) = max
a∈Sd−1

〈STu1, a〉2∑
i∈[n]〈STui , a〉2

(Lemma [13]) For v ∈ Sn−1 and d � n, w.p. at least 1− e−Ω(d),

cos2 θ(v,S) = Θ

(
d

n

)
.

≥ e−O( ln n
2q+1

) ≥ 1−O( ln n
q

)
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Improved analysis of Randomized SVD (4/8)

(Theorem 2) ∃A < 0 such that R(û) = O
((

d
n

) 1
2q+1

)
w.p. at least 1− e−Ω(d).

(Theorem 3) For A < 0 with (i0, γ)-power-law decay, i0 ∈ [n] and γ > 1/2q,

R(û) = Ω

((
d

d + i0

) 1
2q+1

)
w.p. at least 1− e−Ω(d).

(Assumption 1) ∃κ ∈ (0, 1] such that
∑n

i=2 λ
2q+1
i ≥ κ

∑n
i=2 |λi |

2q+1.

(Theorem 4) For A with (i0, γ)-power-law decay, i0 ∈ [n] and γ > 1/2q, and
satisfying Assumption 1, there exists a constant cκ > 0 such that

R(û) = Ω

(
cκ

(
d

d + i0

) 1
2q+1

)
w.p. at least 1− e−Ω(

√
dκ2).
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Improved analysis of Randomized SVD (5/8)

Exploiting prior knowledge of large 〈u1, 1〉2

Question: If 〈u1, 1〉2 = Θ(n), is there a better choice of S other than N (0, 1)n×d?

Algorithm: RSVD(A, q, d)

1 Y ← AqS where S ∼ N (0, 1)n×d ;
2 Y = QR;

3 B← QTAQ;
4 û = Q u1(B);
5 return û;

(Hint: Y:,j = AqS:,j =
∑n

i=1 λ
q
i (uT

i S:,j)ui , ∀j ∈ [d ])

e.g., |S1|+ |S2| = Θ(n)

19



Improved analysis of Randomized SVD (6/8)

Algorithm: RandSum(A, q, d , p)

1 S1 ∼ N (0, 1)n×d
d
2
e, S2 ∼ Bernoulli(p)n×b

d
2
c;

2 S← [S1 S2];
3 return RSVD(A,S,q,d);

(Theorem 5) For A < 0, RandSum(A,q,d ,p) returns û satisfying

R(û) =

(
Ω

(
max

{
d , 〈u1, 1n〉2

}
n

)) 1
2q+1

with prob. ≥ 1− e−Ω(d).

Theorem 5 generalizes to indefinite A under an assumption similar to Assumption 1.
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Improved analysis of Randomized SVD (7/8)

Experiment: 2-conflicting group detection [3, 11]

WikiVot Referendum Slashdot WikiCon

|V | 7 115 10 884 82 140 116 717
|E | 100 693 251 406 500 481 2 026 646
(γ, i0) (4.6, 15) (4.5, 16) (5.3, 17) (2.8, 22)
κ 0.397 0.620 0.204 0.034
cos θ(u1, 1n) 0.378 0.399 0.194 0.193
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invisible

I RSVD: solid line

I RandSum: dashed line
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Improved analysis of Randomized SVD (8/8)

Future work
I Do the results generalize to (row/column)-stochastic matrices?

I Do the results of RandSum hold for any non-centered subgaussian distributions?

I Can we extend the analysis to top-k eigenvectors approximations?

I What is the fundamental limit of R(û) for any q-pass Õ(n)-space algorithm?

I Can we reduce the space complexity while keeping the same guarantees?
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Summary

Part I - k-conflicting group detection

I We formulate the problem of k-conflicting group detection.

I We propose an algorithm that sequentially solves a sub-problem which generalizes
the problem considered by Bonchi et al. [3] and Bhaskara et al. [2].

I We demonstrate the effectness of our algorithm.

Part II - improved analysis of Randomized SVD

I We improve the analysis of RSVD, in the regime of o(ln n) passes, and give the
first analysis of R(·) for indefinite matrices.

I We study the property of Bernoulli random projection and demonstrate its
usefulness to the task of conflicting group detection [3, 11].
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