FSF3940 Probability Theory Oral Exam

Ruo-Chun Tzeng

January 11, 2021

- Measure Theory
- Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **5** Conditional Expectation
- 6 Markov Chain
- Martingale

- Measure Theory
- Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **5** Conditional Expectation
- Markov Chain
- Martingale

Kolmogorov Axioms

sample space $\,\sigma ext{-field}\,$ probability measure

A probability space ($\widehat{\Omega}$, $\widehat{\mathcal{F}}$, \widehat{P}) with $P: \mathcal{F} \to \mathbb{R}$ satisfying:

- $P(\Omega) = 1 \text{ and } P(\emptyset) = 0.$
- **3** Any countable disjoint $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ implies $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

The σ -field $\mathcal F$ is a collection of subsets of Ω satisfying

- $\mathbf{0}$ $\Omega \in \mathcal{F}$.
- 2 Any $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$.
- 3 Any countable $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

The σ -field generated by class $\mathcal C$ is the smallest unique σ -field containing $\mathcal C$.

Random Variable & Convergence Types

A random variable $X : \Omega \to \mathbb{R}$ is \mathcal{F} -measurable if $\forall A \in \mathcal{B}(\mathbb{R})$, $X^{-1}(A) \in \mathcal{F}$.

- $\mathcal{B}(\mathbb{R})$ is called *Borel set*, generated by $\{(a, b] : -\infty \le a < b < \infty\}$.
- X is simple if it has finite range.
- X is integrable if $\int_{\Omega} |X| dP < \infty$, denoted by $X \in L^1$.
- (Measurability Theorem) Any measurable X can be approximated *uniformly* by simple functions $\{X_n\}_{n=1}^{\infty}$.

Given a sequence $\{X_n\}_{n=1}^{\infty}$ of r.v.'s and a r.v. X,

- $X_n \to X$ uniformly if $\lim_{n\to\infty} \sup_{\omega\in\Omega} |X_n(\omega) X(\omega)| = 0$.
- $X_n \to X$ pointwisely if $\forall \omega \in \Omega$, $\lim_{n \to \infty} |X_n(\omega) X(\omega)| = 0$.
- $X_n \stackrel{a.s.}{\to} X$ if $\exists N \in \mathcal{F}$ with P(N) = 0 s.t. $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ for all $\omega \in N^c$.
- $X_n \stackrel{P}{\to} X$ if $\forall \epsilon > 0$, $\lim_{n \to \infty} P(\{\omega \in \Omega : |X_n(\omega) X(\omega)| \ge \epsilon\}) = 0$.

Convergence Theorem

(BCT) If $\{X_n\}_{n=1}^{\infty}$ is uniformly bounded and $X_n \stackrel{P}{\to} X$, then $\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X]$.

(Fatou's Lemma) If $\{X_n\}_{n=1}^{\infty} \geq 0$ and $X_n \stackrel{P}{\to} X$, then $\mathbb{E}[X] \leq \liminf_{n \to \infty} \mathbb{E}[X_n]$. More generally, if $\{X_n\}_{n=1}^{\infty} \geq 0$, then $\mathbb{E}[\liminf_{n \to \infty} X_n] \leq \liminf_{n \to \infty} \mathbb{E}[X_n]$.

(MCT) If $\{X_n\}_{n=1}^{\infty} \geq 0$ and $X_n \uparrow X$, then $\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X]$.

(DCT) If $\{X_n\}_{n=1}^{\infty}$ with $X_n \overset{a.s./P}{\to} X$, $|X_n| \leq Y$ and $Y \in L^1$, then $\lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[X]$.

(Jensen's Inequality) Let ϕ be convex and $X, \phi(X) \in L^1$. Then, $\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[X])$.

Product Space

(Transformation Theorem) Let $X:(\Omega_1,\mathcal{F}_1)\mapsto (\Omega_2,\mathcal{F}_2),\ Y:(\Omega_2,\mathcal{F}_2)\mapsto (\mathbb{R},\mathcal{B}(\mathbb{R})),$ and $P:\mathcal{F}_1\to\mathbb{R}$ be a prob. measure. Then,

$$\int_{\Omega_1} Y(X(\omega_1)) dP(\omega_1) = \int_{\Omega_2} Y(\omega_2) d\underbrace{P(X^{-1}(\omega_2))}_{\text{induced measure}}.$$

(Fubini's Theorem) Let $X \in L^1$ w.r.t. $P = P_1 \times P_2$ on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$. Then,

$$\begin{split} \int_{\Omega_1 \times \Omega_2} X(\omega_1, \omega_2) dP(\omega_1, \omega_2) &= \int_{\Omega_1} \int_{\Omega_2} X(\omega_1, \omega_2) dP_2(\omega_2) dP_1(\omega_1) \\ &= \int_{\Omega_2} \int_{\Omega_1} X(\omega_1, \omega_2) dP_1(\omega_1) dP_2(\omega_2). \end{split}$$

- Measure Theory
- Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **5** Conditional Expectation
- 6 Markov Chair
- Martingale

Distribution Function and Characteristic Function

Given a probability space (Ω, \mathcal{F}, P) and r.v. $X : \Omega \to \mathbb{R}$ measurable on (Ω, \mathcal{F}) .

- $\mu_X(\cdot) = P(X^{-1}(\cdot))$ is the distribution of X.
- $F_X(\cdot) = \mu_X((-\infty, \cdot])$ is the distribution function of X.
- If $X \in L^1$, $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \mu_X(dx)$.
- Denote $\mu_n \stackrel{\mathsf{w}}{\to} \mu$ if $\lim_{n \to \infty} \mu_n(A) = \mu(A)$ for all $A \in \mathcal{B}(\mathbb{R})$ satisfying $\mu(\partial A) = 0$.

The characteristic function of X is

$$arphi_X(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} \mu_X(dx), \forall t \in \mathbb{R}.$$

- φ_X is 1-to-1 to μ_X for any r.v. X.
- φ_X is uniformly continuous and $|\varphi_X(t)| \leq 1$, $\forall t \in \mathbb{R}$.
- If $\mathbb{E}[X^n] < \infty$, then φ_X is *n*-times continuously differentiable.

Portmanteau Theorem

(Portmanteau Theorem) The following are equivalent:

- ② \forall bounded continuous function f on \mathbb{R} , $\lim_{n\to\infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$.
- 3 $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$, $\forall x$ that is a continuous point of F_X .

Relation between convergence types:

- $X_n \stackrel{a.s.}{\to} X$ implies $X_n \stackrel{P}{\to} X$ implies $X_n \Rightarrow X$.
- If X = C for some $C \in \mathbb{R}$, $X_n \Rightarrow X$ implies $X_n \stackrel{P}{\rightarrow} X$.

Independence

- Events A, B are independent if $P(A \cap B) = P(A)P(B)$.
- Random variables X, Y are independent if $P(X \in A, Y \in B) = P(X \in A)P(Y \in B), \forall A, B \in \mathcal{B}(\mathbb{R}).$

Lemma

Let X, Y be r.v.'s on (Ω, \mathcal{F}, P) .

Then, X, Y are independent iff the induced probability measure

$$\mu_{(X,Y)}(A_1 \times A_2) = \mu_X(A_1)\mu_Y(A_2), \forall A_1, A_2 \in \mathcal{B}(\mathbb{R}).$$

This implies for any $f: \mathbb{R}^2 \to \mathbb{R}$,

$$\int_{\mathbb{R}^2} f(x,y) \mu_{(X,Y)}(dx \times dy) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) \mu_X(dx) \mu_Y(dy).$$

- Measure Theory
- Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **5** Conditional Expectation
- Markov Chain
- Martingale

Weak Law of Large Numbers

Let X, Y be independent r.v.'s. on (Ω, \mathcal{F}, P) .

- $\forall A \in \mathcal{B}(\mathbb{R}), \ P((X+Y) \in A) = \int_{x \in \mathbb{R}} \int_{\{y \in \mathbb{R}: x+y \in A\}} \mu_Y(dy) \mu_X(dx).$
- Characteristic function $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$, $\forall t \in \mathbb{R}$.
- Var[X + Y] = Var[X] + Var[Y].

(Chebyshev's Inequality) If $Var[X] < \infty$, then $\forall t \in (0, \infty)$, $P(X > t) \leq \frac{\mathbb{E}[X^2]}{t^2}$.

(WLLN with finite variance) Let $\{X_n\}_{n\in\mathbb{N}}$ be i.i.d. r.v.'s with $Var[X_1]=\sigma^2<\infty$.

Then,
$$\frac{\sum_{i=1}^{n} X_i}{n} \stackrel{P}{ o} \mathbb{E}[X_1].$$

(WLLN) Let $\{X_n\}_{n\in\mathbb{N}}$ be i.i.d. r.v.'s with $\mathbb{E}[|X_1|]<\infty$.

Then,
$$\frac{\sum_{i=1}^{n} X_i}{n} \stackrel{P}{\to} \mathbb{E}[X_1].$$

Strong Law of Large Numbers (1/2)

(Borel-Cantelli Lemma) Let
$$\{A_n\}\subset \mathcal{F}$$
. If $\sum_n P(A_n)<\infty$, then $P(\limsup_{n\to\infty}A_n)=0$.

By Chebyshev's inequality and Borel-Cantelli Lemma, we have the following:

(SLLN with finite 4-th moment) If i.i.d. $\{X_n\}$ with $\mathbb{E}[|X_1|^4] < \infty$, then

$$\frac{\sum_{i=1}^{n} X_{i}}{n} \stackrel{a.s.}{\to} \mathbb{E}[X_{1}].$$

Strong Law of Large Numbers (2/2)

(Kolmogorov's 1-Series Theorem) Let $\{X_n\}$ be independent with 0 mean and $\sum_{n=1}^{\infty} Var[X_n] < \infty$. Then, $\sum_{i=1}^{n} X_i$ converges a.s.

(SLLN) Let $\{X_n\}$ be i.i.d. with 0 mean and $\mathbb{E}[|X_1|] < \infty$.

Then,
$$\frac{\sum_{i=1}^{n} X_i}{n} \stackrel{a.s.}{\to} 0.$$

• Let $\mathcal{F}^n = \sigma(X_n, X_{n+1}, \cdots)$ and tail σ -field $\mathcal{F}^{\infty} = \bigcap_n \mathcal{F}^n$.

(Kolmogorov's 0-1 Law) If $A \in \mathcal{F}^{\infty}$, then P(A) = 0 or 1.

- Measure Theory
- 2 Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **5** Conditional Expectation
- 6 Markov Chain
- Martingale

Central Limit Theorem

(CLT with i.i.d. r.v.'s) Let $\{X_n\}$ be i.i.d. with $\overbrace{\mathit{Var}[X_1]}^{\sigma^2} < \infty$.

$$\mathsf{Then,} \ \frac{\sum_{i \leq n} \frac{\overline{X_i - \mathbb{E}[X_1]}}{\sigma}}{\frac{\sigma}{\sqrt{n}}} \Rightarrow Z \sim \mathcal{N}(0,1).$$

(Lindeberg's CLT) Let $\{X_n\}$ be independent with $\mathbb{E}[X_1]=0$ and $Var[X_n]=\sigma_n^2<\infty$ such that

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{i\leq n}\mathbb{E}[X_i^2\mathbf{1}_{[|X_i|\geq\epsilon s_n]}]=0, \forall \epsilon>0, \text{ where } s_n^2=\sum_{i\leq n}\sigma_i^2.$$

Then,
$$rac{\sum_{i=1}^{n} X_i}{s_n} \Rightarrow Z \sim \mathcal{N}(0,1).$$

Convergence Rate of CLT

(Berry-Esseen Theorem) Let $\{X_n\}$ be i.i.d. with $\mathbb{E}[X_1]=0$, $\mathbb{E}[X_1^2]=\sigma^2<\infty$, and $\mathbb{E}[|X_1|^3]=\rho<\infty$. Then, $\exists C>0$ such that

$$\underbrace{P(\frac{\sum_{i\leq n}X_i}{\sqrt{n\sigma^2}}\leq x)}_{\text{empirical distribution function}}-\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{y^2}{2}}dy \leq \frac{C\rho}{\sigma^3\sqrt{n}}, \forall x\in\mathbb{R}, n\in\mathbb{N}.$$

• Can CLT be stronger (i.e., i.p. or a.s. to $Z \sim \mathcal{N}(0,1)$)?

(Lemma) Let $\{X_n\}$ be i.i.d. with $\mathbb{E}[X_1] = 0$ and $Var[X_1] < \infty$.

$$orall \{n_j\} \subset \{n\}_{n\in \mathbb{N}}, P(\limsup_{j o\infty} rac{\sum_{i\le n_j} X_i}{\sqrt{n_j}} = \infty) = 1.$$

Law of Iterated Logarithm & Large Deviation Principles

• Any result of the form $\sum_{i \le n} X_i / f(n) \to C$ other than $f(n) = \sqrt{n}$ and n?

(Law of Iterated Logarithm) Let $\{X_n\}$ be i.i.d. with $\mathbb{E}[X_1]=0$, $\mathbb{E}[X_1^2]=1$.

Then,
$$P(\limsup_{n \to \infty} \frac{\sum_{i \le n} X_i}{\sqrt{n \ln \ln n}} = \sqrt{2}) = P(\liminf_{n \to \infty} \frac{\sum_{i \le n} X_i}{\sqrt{n \ln \ln n}} = -\sqrt{2}) = 1$$

• How fast does $\sum_{i \le n} X_i/n \to 0$?

(Cramér's Theorem) Let $\{X_n\}$ be i.i.d. such that $H(\alpha) = \ln \mathbb{E}[e^{\alpha X_1}] < \infty$, $\forall \alpha \in \mathbb{R}$.

Then,
$$\lim_{n\to\infty}\frac{\ln P(\sum_{i\leq n}X_i/n>\beta)}{n}=-\underbrace{\sup_{\alpha\in\mathbb{R}}(\alpha\beta-H(\alpha))}_{I(\beta)}, \forall \beta>\mathbb{E}[X_1].$$

- Measure Theory
- 2 Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **5** Conditional Expectation
- 6 Markov Chain
- Martingale

Motivation

Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G} \subset \mathcal{F}$ be a sub σ -field and a r.v. $X \in L^1$

• Naive: if P(A) > 0 for some $A \in \mathcal{F}$, then

$$\underbrace{\mathbb{E}[X|A]}_{\text{a value}} = \int_{\Omega \cap A} X(\omega) dP(\omega|A) = \int_{A} XdP/P(A), \tag{1}$$

where $P(\cdot|A) = P(\cdot \cap A)/P(A)$.

ullet General: $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable and

$$\int_{A} \mathbb{E}[X|\mathcal{G}] dP = \int_{A} XdP, \forall A \in \mathcal{G}.$$
 (2)

Radon-Nikodym Theorem

ullet A signed measure λ is countably additive but not necessarily nonnegative.

Example:
$$\lambda(\cdot) = \int Xd\mu$$
 for nonnegative measure μ .
Then, $\mu(A) = 0$ implies $\lambda(A) = 0$ since $\min_{\omega} X(\omega)\mu(A) \leq \lambda(A) \leq \max_{\omega} X(\omega)\mu(A)$.

• $\lambda \ll \mu$ denotes absolutely continuity of the signed measure λ w.r.t. the nonnegative measure μ . That is, $\mu(A)=0$ for some $A\in \mathcal{F}$ implies $\lambda(A)=0$.

(Radon-Nikodym Theorem) If $\lambda \ll \mu$, then \exists a \mathcal{F} -measurable function $f \in L^1$ such that $\lambda(A) = \int_A f d\mu$, $\forall A \in \mathcal{F}$. The function $f = \frac{d\lambda}{d\mu}$ is uniquely determined μ -a.s.

(Existence and Uniqueness) Let X be \mathcal{F} -measurable and in L^1 w.r.t. P and $\mathcal{G} \subset \mathcal{F}$. Then, \exists a \mathcal{G} -measurable and P-a.s. unique r.v. $\mathbb{E}[X|\mathcal{G}]$ such that

$$\int_{A} \mathbb{E}[X|\mathcal{G}] dP = \int_{A} X dP, \forall A \in \mathcal{G}.$$

Properties

(**Properties of** $\mathbb{E}[X|\mathcal{G}]$) Let $\mathcal{G} \subset \mathcal{F}$ and X be \mathcal{F} -measurable and Y be \mathcal{G} -measurable.

- $\bullet \ \mathbb{E}[Y|\mathcal{G}] \stackrel{a.s.}{=} Y.$
- $\bullet \ \mathbb{E}[|\mathbb{E}[X|\mathcal{G}]|] \stackrel{a.s.}{\leq} \mathbb{E}[|X|].$
- If $X \ge 0$, $\mathbb{E}[X|\mathcal{G}] \stackrel{a.s.}{\ge} 0$.
- $\forall a, b \in \mathbb{R}, \mathbb{E}[aX + bY|\mathcal{G}] \stackrel{a.s.}{=} a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}].$
- If $X, XY \in L^1$, $\mathbb{E}[XY|\mathcal{G}] \stackrel{a.s.}{=} Y\mathbb{E}[X|\mathcal{G}]$.
- If $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{F}$, $\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] \stackrel{a.s.}{=} \mathbb{E}[X|\mathcal{G}_1] \stackrel{a.s.}{=} \mathbb{E}[\mathbb{E}[X|\mathcal{G}_2]|\mathcal{G}_1]$.
- $\mathbb{E}[XY|\mathcal{G}]^2 \stackrel{a.s.}{\leq} \mathbb{E}[X^2|\mathcal{G}]\mathbb{E}[Y^2|\mathcal{G}].$
- BCT, MCT, DCT, Fatou's Lemma, Jensen's Inequality hold a.s.

- Measure Theory
- Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **(5)** Conditional Expectation
- 6 Markov Chain
- Martingale

Stationary Markov Chain

Let (Ω, \mathcal{B}, P) be a probability space and $(\mathcal{X}, \mathcal{F})$ be the state space.

• $\{X_n\}$ with $X_n:\Omega\to\mathcal{X}$ is a Markov Chain if

$$P(X_{n+1} \in A | \sigma(X_1, \cdots, X_n)) = P(X_{n+1} \in A | X_n), \forall A \in \mathcal{F}, \forall n \in \mathbb{N} \cup \{0\}.$$

ullet Markov chain $\{X_n\}$ is *stationary* with transition probability $\pi:\mathcal{X} imes\mathcal{F} o [0,1]$ if

$$P(X_{n+1} \in A|X_n) = \pi(X_n, A), \forall A \in \mathcal{F}, \forall n \in \mathbb{N}.$$

(Chapman-Kolmogorov Equation)

$$\forall k,\ell \in \mathbb{N}, \pi^{(k+\ell)}(x,A) = \int_{y \in \mathcal{X}} \pi^{(\ell)}(y,A) \pi^{(k)}(x,dy), \forall x \in \mathcal{X}, A \in \mathcal{F}.$$

Every stationary Markov chain can be expressed as

$$X_n = f(X_{n-1}, Y_n)$$
 for some function f and i.i.d. $\{Y_n\}, \forall n \in \mathbb{N}$.

Invariant Measure, Stopping Time

Let $\{X_n\}$ be a stationary Markov Chain with transition probability π .

ullet $\mu: \mathcal{F}
ightarrow [0,1]$ is the invariant measure for $\{X_n\}$ if

$$\mu(A) = \int_{y \in \mathcal{X}} \pi(y, A) \mu(dy), \forall A \in \mathcal{F}.$$

ullet $\tau:\Omega \to \mathbb{N} \cup \{\infty\}$ is stopping time if

$$\{\tau \leq n\} \in \mathcal{F}_n, \forall n \in \mathbb{N} \text{ and } \mathcal{F}_n = \sigma(X_0, X_1, \cdots, X_n).$$

Define

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F}^{\infty} : A \cap \{ \tau \leq n \} \in \mathcal{F}_{n}, \forall n \in \mathbb{N} \cup \{ \infty \} \}.$$

Then, (i) τ is \mathcal{F}_{τ} -measurable and (ii) X_{τ} is \mathcal{F}_{τ} -measurable on $\{\tau < \infty\}$.

(Strong Markov property)

$$P(X_{\tau+1} \in A | \mathcal{F}_{\tau}) = \pi(X_{\tau}, A), \forall A \in \mathcal{F} \text{ for all } \{\tau < \infty\}.$$

Aperiodic Markov Chain

Let $\{X_n\}$ be a stationary MC with transition probability π and \mathcal{X} be countable.

• $\{X_n\}$ is irreducible if $\forall x, y \in \mathcal{X}, \exists n \in \mathbb{N}$ such that $\pi^{(n)}(x, y) > 0$.

Let $\tau_x = \inf\{n \geq 1 : X_n = x\}.$

- A state $x \in \mathcal{X}$ is called *transient* if $P(\tau_x < \infty | X_0 = x) < 1$.
- A state $x \in \mathcal{X}$ is called recurrent if $P(\tau_x < \infty | X_0 = x) = 1$. More precisely, x is $\begin{cases} \textit{positive recurrent}, & \textit{if } \mathbb{E}[\tau_x | X_0 = x] < \infty \\ \textit{null recurrent}, & \textit{if } \mathbb{E}[\tau_x | X_0 = x] = \infty \end{cases}$.

For any $x \in \mathcal{X}$, let d_x be the gcd of $D_x = \{n \in \mathbb{N} : \pi^{(n)}(x,x) > 0\}$.

(Theorem) For any $x, y \in \mathcal{X}$, $\pi^{(n)}(x, y)$, $\pi^{(m)}(x, y) > 0$ for some m, n implies $d_x = d_y$.

(Theorem) For any irreducible chain, all states have the same type and period d.

• An irreducible MC is aperiodic if d = 1.

Ergodic Theorem

(Theorem) Let $\{X_n\}$ be irreducible, recurrent, aperiodic on $(\mathcal{X}, \mathcal{F})$ and π be the transition probability.

If $\{X_n\}$ is null recurrent, then

$$\lim_{n\to\infty} \pi^{(n)}(x,y) = 0, \forall x,y \in \mathcal{X}.$$

If $\{X_n\}$ is positive recurrent, then

$$\lim_{n\to\infty} \pi^{(n)}(x,y) = \mu(y), \forall x,y \in \mathcal{X},$$

where $\mu(y) = \frac{1}{\mathbb{E}[au_y|X_0=y]}$ is the limiting distribution.

(Ergodic Theorem) Let $\{X_n\}$ be irreducible, positive recurrent, aperiodic on $(\mathcal{X}, \mathcal{F})$ and $f \in L^1(\mu)$ for $\mu(x) = \frac{1}{\mathbb{E}[\tau_{\nu}|X_0 = \chi]}$. Then,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j\leq n}f(X_j)\stackrel{a.s.}{=}\sum_{x\in\mathcal{X}}f(x)\mu(x).$$

- Measure Theory
- Weak Convergence
- 3 Law of Large Numbers
- 4 Central Limit Theorem
- **(5)** Conditional Expectation
- 6 Markov Chain
- Martingale

Martingale

Given a $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, P)$ filtered probability space.

(**Definition**) $\{X_n\}$ is a martingale if

- (i) X_n is \mathcal{F}_n -measurable, $\forall n \geq 0$.
- (ii) $X_n \in L^1$, $\forall n \geq 0$.
- (iii) $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \stackrel{a.s.}{=} X_n, \forall n \geq 0.$

Similarly, $\{X_n\}$ is a *sub-/super- martingale* if replacing $\stackrel{a.s.}{=}$ with $\stackrel{a.s.}{\geq}$ / $\stackrel{a.s.}{\leq}$ in (iii).

(Doob's Martingale) Given $X \in L^1$ and $\{\mathcal{F}_n\}$, $\{X_n\}$ with $X_n = \mathbb{E}[X|\mathcal{F}_n]$ is a m.g.

Relationship between martingale and submartingale:

- (From Jensen's inequality) Let $\{(X_n, \mathcal{F}_n)\}$ be a martingale and ϕ be a convex function. If $\phi(X_n) \in L^1$ for all $n \geq 0$, then $\{(\phi(X_n), \mathcal{F}_n)\}$ is a submartingale.
- (Doob's Decomposition) Every submartingale $\{(X_n, \mathcal{F}_n)\}$ can be uniquely written as $X_n = M_n + A_n + X_0$, where $\{(M_n, \mathcal{F}_n)\}$ is a martingale and $\{A_n\}$ with $A_0 = 0$ and $A_n \geq A_{n-1}, \forall n \geq 1$ and A_n is \mathcal{F}_{n-1} -measurable, $\forall n \geq 1$.

increasing

predictable

Optional Sampling Theorem

Martingale Transformation: let $M = \{(M_n, \mathcal{F}_n)\}$ be a (sub-/super-) martingale and $A = \{(A_n, \mathcal{F}_n)\}$ be a predictable process.

ullet (sub-/super-) martingale transform of M by A is

$$X_n = \sum_{k \le n} A_k (M_k - M_{k-1}), \forall n \ge 1, X_0 = 0.$$

• The above $\{X_n\}$ is a (sub-/super-) martingale if $A_n \geq 0, X_n \in L^1, orall n$.

(Optional Sampling Theorem) Let $\{(X_n,\mathcal{F}_n)\}$ be a martingale and τ be a stopping time. Then, $\{(X_{n\wedge \tau},\mathcal{F}_n)\}$ is a martingale and $\mathbb{E}[X_{n\wedge \tau}]=\mathbb{E}[X_0], \ \forall n\geq 0$.

• The above holds for sub-/super- martingale by replacing with $\mathbb{E}[X_{n \wedge \tau}] \geq \mathbb{E}[X_0]$ and $\mathbb{E}[X_{n \wedge \tau}] \leq \mathbb{E}[X_0]$, respectively.

Martingale Convergence Theorem

For any $a, b \in \mathbb{R}$ with a < b, let $U_n(a, b) = \sup\{m \ge 1 : \tau_{2m} \le n\}$, where $\tau_0 = 0$, $\tau_{2k+1} = \inf\{n \ge \tau_{2k} : X_n \le a\}$ and $\tau_{2k+2} = \inf\{n \ge \tau_{2k+1} : X_n \ge b\}$.

(Upcrossing Inequality) For a supermartingale $\{(X_n, \mathcal{F}_n)\}$,

$$\mathbb{E}[U_n(a,b)] \leq \frac{\mathbb{E}[(X_n-a)^-]}{b-a}, \forall n \geq 1, a > b.$$

(Theorem) Let $\{(X_n, \mathcal{F}_n)\}$ be a supermartingale with $\sup_n \mathbb{E}[X_n^-] < \infty$. Then, $X_\infty = \lim_{n \to \infty} X_n \in L^1$.

 $\{X_n\}$ is uniformly integrable if $\lim_{M\to\infty} \sup_n \mathbb{E}[|X_n|\mathbf{1}_{\{|X_n|>M\}}] = 0$.

(Martingale Convergence Theorem) Let $X=\{(X_n,\mathcal{F}_n)\}$ be a martingale. Then, X contains the last element $X_\infty\in L^1$ and $\mathbb{E}[X_\infty|\mathcal{F}_n]=X_n,\ \forall n\geq 1$ iff $\{X_n\}$ is uniformly integrable.

• The above hold for sub-/super- martingale by replacing with $\{X_n^+\}$ or $\{X_n^-\}$ is uniformly integrable, respectively.