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Kolmogorov Axioms

A probability space (

sample space︷︸︸︷
Ω ,

σ-field︷︸︸︷
F ,

probability measure︷︸︸︷
P ) with P : F → R satisfying:

1 ∀A ∈ F , P(A) ≥ 0.
2 P(Ω) = 1 and P(∅) = 0.
3 Any countable disjoint {Ai}∞i=1 ⊂ F implies P(

⋃∞
i=1 Ai ) =

∑∞
i=1 P(Ai ).

The σ-field F is a collection of subsets of Ω satisfying
1 Ω ∈ F .
2 Any A ∈ F implies Ac ∈ F .
3 Any countable {Ai}∞i=1 ⊂ F implies

⋃∞
i=1 Ai ∈ F .

The σ-field generated by class C is the smallest unique σ-field containing C.
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Random Variable & Convergence Types

A random variable X : Ω → R is F-measurable if ∀A ∈ B(R), X−1(A) ∈ F .
B(R) is called Borel set, generated by {(a, b] : −∞ ≤ a < b <∞}.
X is simple if it has finite range.
X is integrable if

∫
Ω |X |dP <∞, denoted by X ∈ L1.

(Measurability Theorem) Any measurable X can be approximated uniformly by
simple functions {Xn}∞n=1.

Given a sequence {Xn}∞n=1 of r.v.’s and a r.v. X ,
Xn → X uniformly if limn→∞ supω∈Ω |Xn(ω)− X(ω)| = 0.
Xn → X pointwisely if ∀ω ∈ Ω, limn→∞ |Xn(ω)− X(ω)| = 0.

Xn
a.s.→ X if ∃N ∈ F with P(N) = 0 s.t. limn→∞ Xn(ω) = X(ω) for all ω ∈ Nc .

Xn
P→ X if ∀ε > 0, limn→∞ P({ω ∈ Ω : |Xn(ω)− X(ω)| ≥ ε}) = 0.
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Convergence Theorem

(BCT) If {Xn}∞n=1 is uniformly bounded and Xn
P→ X , then limn→∞ E[Xn] = E[X ].

(Fatou’s Lemma) If {Xn}∞n=1 ≥ 0 and Xn
P→ X , then E[X ] ≤ lim inf

n→∞
E[Xn].

More generally, if {Xn}∞n=1 ≥ 0, then E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn].

(MCT) If {Xn}∞n=1 ≥ 0 and Xn ↑ X , then limn→∞ E[Xn] = E[X ].

(DCT) If {Xn}∞n=1 with Xn
a.s./P
→ X , |Xn| ≤ Y and Y ∈ L1, then

limn→∞ E[Xn] = E[X ].

(Jensen’s Inequality) Let φ be convex and X , φ(X) ∈ L1. Then, E[φ(X)] ≥ φ(E[X ]).
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Product Space

(Transformation Theorem) Let X : (Ω1,F1) 7→ (Ω2,F2), Y : (Ω2,F2) 7→ (R,B(R)),
and P : F1 → R be a prob. measure. Then,∫

Ω1

Y (X(ω1))dP(ω1) =
∫

Ω2

Y (ω2)d P(X−1(ω2))︸ ︷︷ ︸
induced measure

.

(Fubini’s Theorem) Let X ∈ L1 w.r.t. P = P1 × P2 on (Ω1 × Ω2,F1 ×F2). Then,∫
Ω1×Ω2

X(ω1, ω2)dP(ω1, ω2) =
∫

Ω1

∫
Ω2

X(ω1, ω2)dP2(ω2)dP1(ω1)

=
∫

Ω2

∫
Ω1

X(ω1, ω2)dP1(ω1)dP2(ω2).
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Distribution Function and Characteristic Function

Given a probability space (Ω,F ,P) and r.v. X : Ω→ R measurable on (Ω,F).

µX (·) = P(X−1(·)) is the distribution of X .
FX (·) = µX ((−∞, ·]) is the distribution function of X .
If X ∈ L1, E[X ] =

∫∞
−∞ xµX (dx).

Denote µn
w→ µ if limn→∞ µn(A) = µ(A) for all A ∈ B(R) satisfying µ(∂A) = 0.

The characteristic function of X is

ϕX (t) = E[eitX ] =
∫ ∞
−∞

eitxµX (dx), ∀t ∈ R.

ϕX is 1-to-1 to µX for any r.v. X .
ϕX is uniformly continuous and |ϕX (t)| ≤ 1, ∀t ∈ R.
If E[Xn] <∞, then ϕX is n-times continuously differentiable.
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Portmanteau Theorem

(Portmanteau Theorem) The following are equivalent:

1 Xn ⇒ X .
2 ∀ bounded continuous function f on R, limn→∞ E[f (Xn)] = E[f (X)].
3 limn→∞ FXn (x) = FX (x), ∀x that is a continuous point of FX .
4 ∀ closed set C ⊂ R, lim sup

n→∞
P(Xn ∈ C) ≤ P(X ∈ C).

5 ∀ open set O ⊂ R, lim inf
n→∞

P(Xn ∈ O) ≥ P(X ∈ O).

6 limn→∞ ϕXn (t) = ϕX (t), ∀t ∈ R.

Relation between convergence types:

Xn
a.s.→ X implies Xn

P→ X implies Xn ⇒ X .

If X = C for some C ∈ R, Xn ⇒ X implies Xn
P→ X .
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Independence

Events A,B are independent if P(A ∩ B) = P(A)P(B).
Random variables X ,Y are independent if
P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀A,B ∈ B(R).

Lemma
Let X ,Y be r.v.’s on (Ω,F ,P).
Then, X ,Y are independent iff the induced probability measure

µ(X ,Y )(A1 × A2) = µX (A1)µY (A2), ∀A1,A2 ∈ B(R).

This implies for any f : R2 → R,∫
R2

f (x , y)µ(X ,Y )(dx × dy) =
∫
R

∫
R
f (x , y)µX (dx)µY (dy).
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Weak Law of Large Numbers

Let X ,Y be independent r.v.’s. on (Ω,F ,P).

∀A ∈ B(R), P((X + Y ) ∈ A) =
∫
x∈R

∫
{y∈R:x+y∈A} µY (dy)µX (dx).

Characteristic function ϕX+Y (t) = ϕX (t)ϕY (t), ∀t ∈ R.
Var [X + Y ] = Var [X ] + Var [Y ].

(Chebyshev’s Inequality) If Var [X ] <∞, then ∀t ∈ (0,∞), P(X > t) ≤ E[X2]
t2 .

(WLLN with finite variance) Let {Xn}n∈N be i.i.d. r.v.’s with Var [X1] = σ2 <∞.

Then,

∑n
i=1 Xi

n
P→ E[X1].

(WLLN) Let {Xn}n∈N be i.i.d. r.v.’s with E[|X1|] <∞.

Then,

∑n
i=1 Xi

n
P→ E[X1].
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Strong Law of Large Numbers (1/2)

(Borel-Cantelli Lemma) Let {An} ⊂ F . If
∑

n P(An) <∞, then P(lim sup
n→∞

An) = 0.

By Chebyshev’s inequality and Borel-Cantelli Lemma, we have the following:

(SLLN with finite 4-th moment) If i.i.d. {Xn} with E[|X1|4] <∞, then∑n
i=1 Xi

n
a.s.→ E[X1].
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Strong Law of Large Numbers (2/2)

(Kolmogorov’s 1-Series Theorem) Let {Xn} be independent with 0 mean and∑∞
n=1 Var [Xn] <∞. Then,

∑n
i=1 Xi converges a.s.

(SLLN) Let {Xn} be i.i.d. with 0 mean and E[|X1|] <∞.

Then,

∑n
i=1 Xi

n
a.s.→ 0.

Let Fn = σ(Xn,Xn+1, · · · ) and tail σ-field F∞ =
⋂

n F
n.

(Kolmogorov’s 0-1 Law) If A ∈ F∞, then P(A) = 0 or 1.
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Central Limit Theorem

(CLT with i.i.d. r.v.’s) Let {Xn} be i.i.d. with

σ2︷ ︸︸ ︷
Var [X1] <∞.

Then,

∑
i≤n

standardized Xi︷ ︸︸ ︷
Xi − E[X1]

σ√
n

⇒ Z ∼ N (0, 1).

(Lindeberg’s CLT) Let {Xn} be independent with E[X1] = 0 and Var [Xn] = σ2n <∞
such that

lim
n→∞

1
s2n

∑
i≤n

E[X2
i 1[|Xi |≥εsn ]] = 0, ∀ε > 0, where s2n =

∑
i≤n

σ2i .

Then,

∑n
i=1 Xi

sn
⇒ Z ∼ N (0, 1).
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Convergence Rate of CLT

(Berry-Esseen Theorem) Let {Xn} be i.i.d. with E[X1] = 0, E[X2
1 ] = σ2 <∞, and

E[|X1|3] = ρ <∞. Then, ∃C > 0 such that∣∣∣∣∣∣∣∣ P(

∑
i≤n Xi
√
nσ2

≤ x)︸ ︷︷ ︸
empirical distribution function

−
1
√
2π

∫ x

−∞
e−

y2
2 dy

∣∣∣∣∣∣∣∣ ≤
Cρ
σ3
√
n
, ∀x ∈ R, n ∈ N.

Can CLT be stronger (i.e., i.p. or a.s. to Z ∼ N (0, 1))?

(Lemma) Let {Xn} be i.i.d. with E[X1] = 0 and Var [X1] <∞.

∀{nj} ⊂ {n}n∈N,P(lim sup
j→∞

∑
i≤nj

Xi
√nj

=∞) = 1.
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Law of Iterated Logarithm & Large Deviation Principles

Any result of the form
∑

i≤n Xi/f (n)→ C other than f (n) =
√
n and n?

(Law of Iterated Logarithm) Let {Xn} be i.i.d. with E[X1] = 0, E[X2
1 ] = 1.

Then, P(lim sup
n→∞

∑
i≤n Xi

√
n ln ln n

=
√
2) = P(lim inf

n→∞

∑
i≤n Xi

√
n ln ln n

= −
√
2) = 1

How fast does
∑

i≤n Xi/n→ 0?

(Cramér’s Theorem) Let {Xn} be i.i.d. such that H(α) = lnE[eαX1 ] <∞, ∀α ∈ R.

Then, lim
n→∞

lnP(
∑

i≤n Xi/n > β)

n
= − sup

α∈R
(αβ − H(α))︸ ︷︷ ︸

L(β)

, ∀β > E[X1].
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Motivation

Let (Ω,F ,P) be a probability space, G ⊂ F be a sub σ-field and a r.v. X ∈ L1

Naive: if P(A) > 0 for some A ∈ F , then

E[X |A]︸ ︷︷ ︸
a value

=
∫

Ω∩A
X(ω)dP(ω|A) =

∫
A
XdP/P(A), (1)

where P(·|A) = P(· ∩ A)/P(A).
General: E[X |G] is G-measurable and∫

A
E[X |G]︸ ︷︷ ︸
a r.v.

dP =
∫
A
XdP, ∀A ∈ G. (2)
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Radon-Nikodym Theorem

A signed measure λ is countably additive but not necessarily nonnegative.

Example: λ(·) =
∫

·
Xdµ for nonnegative measure µ.

Then, µ(A) = 0 implies λ(A) = 0 since minω X(ω)µ(A) ≤ λ(A) ≤ maxω X(ω)µ(A).

λ� µ denotes absolutely continuity of the signed measure λ w.r.t. the
nonnegative measure µ. That is, µ(A) = 0 for some A ∈ F implies λ(A) = 0.

(Radon-Nikodym Theorem) If λ� µ, then ∃ a F-measurable function f ∈ L1 such
that λ(A) =

∫
A fdµ, ∀A ∈ F . The function f = dλ

dµ is uniquely determined µ-a.s.

(Existence and Uniqueness) Let X be F-measurable and in L1 w.r.t. P and G ⊂ F .
Then, ∃ a G-measurable and P-a.s. unique r.v. E[X |G] such that∫

A
E[X |G]dP =

∫
A
XdP, ∀A ∈ G.
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Properties

(Properties of E[X |G]) Let G ⊂ F and X be F-measurable and Y be G-measurable.

E[Y |G] a.s.= Y .

E[|E[X |G]|]
a.s.
≤ E[|X |].

If X ≥ 0, E[X |G]
a.s.
≥ 0.

∀a, b ∈ R, E[aX + bY |G] a.s.= aE[X |G] + bE[Y |G].

If X ,XY ∈ L1, E[XY |G] a.s.= YE[X |G].

If G1 ⊂ G2 ⊂ F , E[E[X |G1]|G2] a.s.= E[X |G1] a.s.= E[E[X |G2]|G1].

E[XY |G]2
a.s.
≤ E[X2|G]E[Y 2|G].

BCT, MCT, DCT, Fatou’s Lemma, Jensen’s Inequality hold a.s.
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Stationary Markov Chain

Let (Ω,B,P) be a probability space and (X ,F) be the state space.

{Xn} with Xn : Ω→ X is a Markov Chain if

P(Xn+1 ∈ A|σ(X1, · · · ,Xn)) = P(Xn+1 ∈ A|Xn), ∀A ∈ F , ∀n ∈ N ∪ {0}.

Markov chain {Xn} is stationary with transition probability π : X ×F → [0, 1] if

P(Xn+1 ∈ A|Xn) = π(Xn,A), ∀A ∈ F , ∀n ∈ N.

(Chapman-Kolmogorov Equation)

∀k, ` ∈ N, π(k+`)(x ,A) =
∫
y∈X

π(`)(y ,A)π(k)(x , dy), ∀x ∈ X ,A ∈ F .

Every stationary Markov chain can be expressed as

Xn = f (Xn−1,Yn) for some function f and i.i.d. {Yn},∀n ∈ N.
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Invariant Measure, Stopping Time

Let {Xn} be a stationary Markov Chain with transition probability π.

µ : F → [0, 1] is the invariant measure for {Xn} if

µ(A) =
∫
y∈X

π(y ,A)µ(dy), ∀A ∈ F .

τ : Ω→ N ∪ {∞} is stopping time if

{τ ≤ n} ∈ Fn, ∀n ∈ N and Fn = σ(X0,X1, · · · ,Xn).

Define
Fτ = {A ∈ F∞ : A ∩ {τ ≤ n} ∈ Fn,∀n ∈ N ∪ {∞}}.

Then, (i) τ is Fτ -measurable and (ii) Xτ is Fτ -measurable on {τ <∞}.
(Strong Markov property)

P(Xτ+1 ∈ A|Fτ ) = π(Xτ ,A), ∀A ∈ F for all {τ <∞}.
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Aperiodic Markov Chain

Let {Xn} be a stationary MC with transition probability π and X be countable.

{Xn} is irreducible if ∀x , y ∈ X , ∃n ∈ N such that π(n)(x , y) > 0.

Let τx = inf{n ≥ 1 : Xn = x}.

A state x ∈ X is called transient if P(τx <∞|X0 = x) < 1.

A state x ∈ X is called recurrent if P(τx <∞|X0 = x) = 1.
More precisely, x is

{
positive recurrent, if E[τx |X0 = x ] <∞
null recurrent, if E[τx |X0 = x ] =∞

.

For any x ∈ X , let dx be the gcd of Dx = {n ∈ N : π(n)(x , x) > 0}.

(Theorem) For any x , y ∈ X , π(n)(x , y), π(m)(x , y) > 0 for some m, n implies dx = dy .

(Theorem) For any irreducible chain, all states have the same type and period d .

An irreducible MC is aperiodic if d = 1.
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Ergodic Theorem

(Theorem) Let {Xn} be irreducible, recurrent, aperiodic on (X ,F) and π be the
transition probability.
If {Xn} is null recurrent, then

lim
n→∞

π(n)(x , y) = 0,∀x , y ∈ X .

If {Xn} is positive recurrent, then

lim
n→∞

π(n)(x , y) = µ(y), ∀x , y ∈ X ,

where µ(y) = 1
E[τy |X0=y ] is the limiting distribution.

(Ergodic Theorem) Let {Xn} be irreducible, positive recurrent, aperiodic on (X ,F)
and f ∈ L1(µ) for µ(x) = 1

E[τx |X0=x ] . Then,

lim
n→∞

1
n

∑
j≤n

f (Xj )
a.s.=
∑
x∈X

f (x)µ(x).
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Martingale

Given a (Ω,F , {Fn},P) filtered probability space.

(Definition) {Xn} is a martingale if

(i) Xn is Fn-measurable, ∀n ≥ 0︸ ︷︷ ︸
adapted

.

(ii) Xn ∈ L1, ∀n ≥ 0.

(iii) E[Xn+1|Fn] a.s.= Xn, ∀n ≥ 0.

Similarly, {Xn} is a sub-/super- martingale if replacing a.s.= with
a.s.
≥ /

a.s.
≤ in (iii).

(Doob’sMartingale) Given X ∈ L1 and {Fn}, {Xn} with Xn = E[X |Fn] is a m.g.

Relationship between martingale and submartingale:

(From Jensen’s inequality) Let {(Xn,Fn)} be a martingale and φ be a convex
function. If φ(Xn) ∈ L1 for all n ≥ 0, then {(φ(Xn),Fn)} is a submartingale.
(Doob’s Decomposition) Every submartingale {(Xn,Fn)} can be uniquely
written as Xn = Mn + An + X0, where {(Mn,Fn)} is a martingale and {An}
with A0 = 0 and An ≥ An−1,∀n ≥ 1︸ ︷︷ ︸

increasing

and An is Fn−1-measurable, ∀n ≥ 1︸ ︷︷ ︸
predictable

.
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Optional Sampling Theorem

Martingale Transformation: let M = {(Mn,Fn)} be a (sub-/super-) martingale and
A = {(An,Fn)} be a predictable process.

(sub-/super-) martingale transform of M by A is

Xn =
∑
k≤n

Ak(Mk −Mk−1), ∀n ≥ 1,X0 = 0.

The above {Xn} is a (sub-/super-) martingale if An ≥ 0,Xn ∈ L1, ∀n.

(Optional Sampling Theorem) Let {(Xn,Fn)} be a martingale and τ be a stopping
time. Then, {(Xn∧τ ,Fn)} is a martingale and E[Xn∧τ ] = E[X0], ∀n ≥ 0.

The above holds for sub-/super- martingale by replacing with E[Xn∧τ ] ≥ E[X0]
and E[Xn∧τ ] ≤ E[X0], respectively.
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Martingale Convergence Theorem

For any a, b ∈ R with a < b, let Un(a, b) = sup{m ≥ 1 : τ2m ≤ n},where τ0 = 0,
τ2k+1 = inf{n ≥ τ2k : Xn ≤ a} and τ2k+2 = inf{n ≥ τ2k+1 : Xn ≥ b}.

(Upcrossing Inequality) For a supermartingale {(Xn,Fn)},

E[Un(a, b)] ≤
E[(Xn − a)−]

b − a
, ∀n ≥ 1, a > b.

(Theorem) Let {(Xn,Fn)} be a supermartingale with supn E[X−n ] <∞. Then,
X∞ = limn→∞ Xn ∈ L1.

{Xn} is uniformly integrable if limM→∞ supn E[|Xn|1{|Xn|>M}] = 0.

(Martingale Convergence Theorem) Let X = {(Xn,Fn)} be a martingale. Then, X
contains the last element X∞ ∈ L1 and E[X∞|Fn] = Xn, ∀n ≥ 1 iff {Xn} is uniformly
integrable.

The above hold for sub-/super- martingale by replacing with {X+
n } or {X−n } is

uniformly integrable, respectively.
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