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@ Measure Theory
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Kolmogorov Axioms

sample space o-field probability measure
A probability space ( Q@ , F , P ) with P : F — R satisfying:
Q vAc F PA) >0.
Q P(Q) =1and P(B)=0.
© Any countable disjoint {A;}22; C F implies P({ ", A)) = Y, P(A).

The o-field F is a collection of subsets of Q satisfying

Q acr
@ Any A€ Fimplies A€ € F.
© Any countable {Ai}£2, C F implies U:1 A; € F.

The o-field generated by class C is the smallest unique o-field containing C.
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Random Variable & Convergence Types

A random variable X : Q — R is F-measurable if YA € B(R), X"'(A) € F.

@ B(R) is called Borel set, generated by {(a, b] : —co < a < b < co}.
@ X is simple if it has finite range.
@ X is integrable if fQ |X|dP < oo, denoted by X € L!.

@ (Measurability Theorem) Any measurable X can be approximated uniformly by
simple functions {X,}5°,.

Given a sequence {X,}2; of rv's and a rv. X,
@ X, — X uniformly if limp— o0 sup,cq [ Xn(w) — X(w)| = 0.
@ X, — X pointwisely if Vw € Q, limp— o0 | Xn(w) — X(w)| = 0.
® X, %3 X if IN € F with P(N) = 0 s.t. limp_soe Xn(w) = X(w) for all w € NE.

@ X, 5 X if Ve > 0, limpoo P({w € Q1 [ Xn(w) — X(w)| > €}) = 0.
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Convergence Theorem

(BCT) If {Xnh}52, is uniformly bounded and X, £> X, then limp— oo E[Xn] = E[X]. J

(Fatou’s Lemma) If {X,}2°, > 0 and X, - X, then E[X] < lim infE[X,].
n—oo
More generally, if {X,}52; > 0, then E[liminfX,] < liminfE[X,].
n— oo n—oo

(MCT) If {X,}52, > 0 and X, 1 X, then lim_so0 E[X,] = E[X]. J
(DCT) If {X,}22, with X, 4% X, [Xo| < ¥ and Y € L1, then
lim s 00 E[Xa] = E[X].

(Jensen’s Inequality) Let ¢ be convex and X, ¢(X) € L. Then, E[¢(X)] > #(E[X]). J
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Product Space

(Transformation Theorem) Let X : (Q1, F1) — (Q2, F2), Y : (2, F2) — (R, B(R)),
and P : 71 — R be a prob. measure. Then,

/Y(X(wl))dP(wl):/ Y (w2)d P(X Y (w2)) -
= @ induced measure

(Fubini’s Theorem) Let X € L! w.r.t. P = P; x P> on (Q1 x Q, F1 X F»). Then,

/ X(wl,wg)dP(wl,wz):/ / X (w1, w2)dPa(w2)dPy(w1)
Q1 xQp o Ja,

_ / / X(wr, w2)dPy (1) dPa(cw2).
Q JQy
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© Weak Convergence
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Distribution Function and Characteristic Function

Given a probability space (Q2, F, P) and r.v. X : Q — R measurable on (9, F).

@ ux(-) = P(XTL(-)) is the distribution of X.

@ Fx(:) = ux((—o0,]) is the distribution function of X.

@ If X el E[X]= [7 xpx(dx).

@ Denote jtn — 1 if limp_s00 pn(A) = p(A) for all A € B(R) satisfying p(9A) = 0.
The characteristic function of X is

ox(t) = E[e™] = / e™ x(dx),Vt € R.

oo
@ px is 1-to-1 to ux for any r.v. X.

@ x is uniformly continuous and |px(t)] <1, Vt € R.
@ If E[X"] < oo, then px is n-times continuously differentiable.
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Portmanteau Theorem

(Portmanteau Theorem) The following are equivalent:

Q X, =X

© V bounded continuous function f on R, lims—oo E[f(Xn)] = E[f(X)].
Q limooo Fx,(x) = Fx(x), Vx that is a continuous point of Fx.

Q V closed set C C R, limsupP(X, € C) < P(X € C).

n— oo

© V open set O C R, liminfP(X, € 0) > P(X € O).
n—oo

Q im0 px, (t) = x(t), VE ER.

Relation between convergence types:

o X, 28X implies X, £> X implies X, = X.

@ If X=Cforsome CeER, X, = X impIieaniX.
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Independence

@ Events A, B are independent if P(AN B) = P(A)P(B).

@ Random variables X, Y are independent if
P(X €AY € B)y= P(X € A)P(Y € B), VA, B € B(R).

Lemma

Let X, Y be r.v.s on (Q,F, P).
Then, X, Y are independent iff the induced probability measure

wx,v) (AL X A2) = px(Ar)py (A2), VAL, Az € B(R).

This implies for any f : R?2 5 R,

/f(x,y)u(x,Y)(dXXdy)://f(&y)ux(dX)uy(dy)-
R2 RJR
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© Law of Large Numbers
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Weak Law of Large Numbers

Let X, Y be independent r.v.s. on (Q, F, P).

@ VA€ B(R), P(X+Y)€A) = fxER f{yER:meA} wy (dy)px(dx).
@ Characteristic function pxty(t) = px(t)ey(t), Vt € R.
@ Var[X + Y] = Var[X] + Var[Y].

2
(Chebyshev’s Inequality) If Var[X] < oo, then Vt € (0,00), P(X > t) < E[:z( 1

(WLLN with finite variance) Let {X,},en be i.i.d. r.v's with Var[Xi] = 02 < co.

n

"X

Then, LiaXi B EX).
n

(WLLN) Let {Xp},en be iiid. r.v's with E[|X;]] < co.

X
Then, Z’;l f) E[X1].
n
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Strong Law of Large Numbers (1/2)

n— oo

(Borel-Cantelli Lemma) Let {A,} C F. If Zn P(An) < oo, then P(limsupA,) = 0. J

@ By Chebyshev's inequality and Borel-Cantelli Lemma, we have the following:

(SLLN with finite 4-th moment) If i.i.d. {X,} with E[|X1]*] < oo, then

S

X
ISR Al
n
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Strong Law of Large Numbers (2/2)

(Kolmogorov’s 1-Series Theorem) Let {X,} be independent with 0 mean and
Z:il Var[Xp] < oco. Then, 27:1 X; converges a.s.

(SLLN) Let {X,} be i.i.d. with 0 mean and E[|X;[] < co.

n
S X
Then, &4=L"" 23,
n

@ Let 7" = 0(Xp, Xp11,- -+ ) and tail o-field F>° = (1) F".

Kolmogorov’s 0-1 Law) If A € F°°, then P(A) =0 or 1.
J
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@ Central Limit Theorem
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Central Limit Theorem

o2

—~N
(CLT with i.i.d. r.v.s) Let {X,} be i.i.d. with Var[Xi] < co.

standardized X;

—

> X — E[X4]
i<

Then, % = Z ~ N(0,1).

Lindeberg’s CLT) Let {X,} be independent with E[X;] = 0 and Var[X,] = 02 < oo
( g ) Let {Xn} P [X1] [Xn] = 03

such that
.1 2 - D _ 2
nILn;O g ;E[X,- 1[x;|>es,] = 0, Ve > 0, where s; = ;a,.
i<n i<n

¢
Lin X = Z ~ N(0,1).

Sn

Then,
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Convergence Rate of CLT

(Berry-Esseen Theorem) Let {X,} be i.i.d. with E[X;] = 0, E[X?] = 02 < co, and
E[|X1]3] = p < 0o. Then, 3C > 0 such that

Z' Xi 1 x v C

P(EiEr <) —— e Tdy| < =L vxeR,neN.
( no? ) Vor J_ oo ~ o3vn

——_— ———

empirical distribution function

@ Can CLT be stronger (i.e., i.p. or a.s. to Z ~ N(0,1))?

(Lemma) Let {X,} be i.i.d. with E[X;] =0 and Var[Xi] < co.

Wi} C {nnen, P =
n; n}nen, P(lim sup =o00)=1.
! ! Jj—oo VN
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Law of Iterated Logarithm & Large Deviation Principles

@ Any result of the form ZKHX;/f(n) — C other than f(n) = /n and n?
(Law of lterated Logarithm) Let {X,} be i.i.d. with E[Xi] =0, E[X}?] = 1.

Then, P(lim SUPM =V2) = P(lim infM =—V2)=1
’ n—oo Vnininn n—oo v/ninlnn

@ How fast does Zi<nXi/n — 07

(Cramér’s Theorem) Let {X,} be i.i.d. such that H(a) = InE[e®X1] < 0o, Va € R.

In P _ Xi/n
Then, lim (Z’S" k) = — sup(af — H(a)),VB > E[X1].

n—oo n a€ER

L(B)
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© Conditional Expectation
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Let (Q,F, P) be a probability space, G C F be a sub o-field and a r.v. X € L!
@ Naive: if P(A) > 0 for some A € F, then

IE[X|A]:/ X(w)dP(w|A):/XdP/P(A), (1)
M~ QnA A

a value

where P(-|A) = P(- N A)/P(A).
@ General: E[X|G] is G-measurable and

/E[X\g] dP:/XdP,VAe g. (2)
AN~ A

ar.v.
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Radon-Nikodym Theorem

@ A signed measure X is countably additive but not necessarily nonnegative.

Example: A(-) = f Xdp for nonnegative measure .
Then, p(A) = 0 implies A(A) = 0 since min, X(w)u(A) < A(A) < max,, X(w)u(A).

@ )\ < u denotes absolutely continuity of the signed measure A w.r.t. the
nonnegative measure p. That is, u(A) = 0 for some A € F implies A(A) = 0.

(Radon-Nikodym Theorem) If A\ < p, then 3 a F-measurable function f € L! such
that A(A) = fA fdu, VA € F. The function f = % is uniquely determined p-a.s.

(Existence and Uniqueness) Let X be F-measurable and in L! w.r.t. P and G C F.
Then, 3 a G-measurable and P-a.s. unique r.v. E[X|G] such that

/]E[X\g]dP:/XdP,vAe g.
A A
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(Properties of E[X|G]) Let G C F and X be F-measurable and Y be G-measurable.

@ E[Y|G] E V.

E[IEIX|G]l] < E[IX]).

If X >0, E[X|G] > 0.

Va,b € R, E[aX + bY|G] 2 aE[X|G] + bE[Y|G].

If X,XY € L1, E[XY|G] = YE[X|]].

If G1 C G2 C F, E[E[X|G1]|G2] = E[X|G1] = E[E[X|G2]|G1].

a.s.
E[XY|G]* < E[X?|G]E[Y?|G].
BCT, MCT, DCT, Fatou's Lemma, Jensen’s Inequality hold a.s.
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@ Markov Chain
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Stationary Markov Chain

Let (2, B, P) be a probability space and (X, F) be the state space.
@ {Xn} with X, : Q — X is a Markov Chain if

P(Xpt1 € Alo(X1, -+, Xn)) = P(Xny1 € AlXn),VA € F,Vn € NU{0}.
@ Markov chain {X,} is stationary with transition probability 7 : X x F — [0, 1] if
P(Xnt1 € AlXn) = w(Xn, A),VA € F,Vn € N.

@ (Chapman-Kolmogorov Equation)

vk, € N, 70 (x, A) = / 7Oy, Ar®) (x, dy),Vx € X, A€ F.
yeX

@ Every stationary Markov chain can be expressed as

Xn = f(Xn=1, Yn) for some function f and i.i.d. {Y,},Vn e N.
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Invariant Measure, Stopping Time

Let {Xnh} be a stationary Markov Chain with transition probability .

@ u:F — [0,1] is the invariant measure for {X,} if

w(A) :/ m(y, Au(dy), VA € F.
yeX

@ 7:Q — NU{oo} is stopping time if
{r < n} € Fn,¥n €N and F, = o(Xo, X1, -+ , Xn).

@ Define
Fr={AcF* :An{r <n} € Fn,Vn e NU{oo}}.

Then, (i) 7 is Fr-measurable and (ii) Xr is Fr-measurable on {7 < co}.
@ (Strong Markov property)

P(Xr11 € AlFy) = m(Xr, A),VA € F for all {r < co}.
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Aperiodic Markov Chain

Let {X,} be a stationary MC with transition probability 7 and X be countable.
@ {X,} is irreducible if ¥x,y € X,3n € N such that 7(")(x,y) > 0.

Let 7w = inf{n >1: X, = x}.
@ A state x € X is called transient if P(1x < co|Xp = x) < 1.

@ A state x € X is called recurrent if P(7x < co|Xp = x) = 1.
positive recurrent, if E[Tx|Xp = x] < oo
null recurrent, ifE[T¢|Xp = x] = 00

More precisely, x is {
For any x € X, let dy be the ged of Dy = {n € N: n()(x, x) > 0}.

(Theorem) For any x,y € X, 7("(x, y), 7(™(x, y) > 0 for some m, n implies dx = dy.J

(Theorem) For any irreducible chain, all states have the same type and period d. J

@ An irreducible MC is aperiodic if d = 1.
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Ergodic Theorem

(Theorem) Let {X,} be irreducible, recurrent, aperiodic on (X, F) and 7 be the
transition probability.
If {Xnh} is null recurrent, then

lim 7" (x,y) =0,Vx,y € X.

n—o00

If {Xnh} is positive recurrent, then

lim 7" (x,y) = u(y),vx,y € X,

n—oo

where u(y) = m is the limiting distribution.

(Ergodic Theorem) Let {X,} be irreducible, positive recurrent, aperiodic on (X, F)

and f € LY(p) for pu(x) = W Then,
dim =N X)) Y A0
j<n x€X

Ruo-Chun Tzeng FSF3940 Probability Theory



@ Martingale
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Martingale

Given a (Q, F,{Fn}, P) filtered probability space.
(Definition) {X,} is a martingale if
(i) Xn is Fp-measurable,Vn > 0.

adapted
(i) Xn€ L', vn>o.
(i) E[Xnp1|Fn] = X, ¥n > 0.

a.s. a.s.
Similarly, {X,} is a sub-/super- martingale if replacing =" with > / < in (iii).
(Doob’s Martingale) Given X € L' and {F,}, {Xn} with X, = E[X|F,] is a m.g.
Relationship between martingale and submartingale:

@ (From Jensen's inequality) Let {(X,, F5)} be a martingale and ¢ be a convex
function. If ¢(Xn) € L for all n > 0, then {(#(Xa), Fn)} is a submartingale.
@ (Doob’s Decomposition) Every submartingale {(X,, F»)} can be uniquely

written as X, = M, + A, + Xo, where {(M,, )} is a martingale and {A,}
with Ap =0 and A, > Ap—1,Vn > 1 and A, is Fp—1-measurable,Vn > 1.

increasing predictable

Ruo-Chun Tzeng FSF3940 Probability Theory



Optional Sampling Theorem

Martingale Transformation: let M = {(M,, F,)} be a (sub-/super-) martingale and
A = {(An, Fn)} be a predictable process.

@ (sub-/super-) martingale transform of M by A is

X, = ZAk(Mk — My_1),¥n>1,Xo = 0.
k<n

@ The above {X,} is a (sub-/super-) martingale if A, > 0, X, € L!,Vn.

(Optional Sampling Theorem) Let {(X,, F»)} be a martingale and 7 be a stopping
time. Then, {(Xaar,Fn)} is @ martingale and E[Xor+] = E[Xo], Vn > 0. J

@ The above holds for sub-/super- martingale by replacing with E[Xaa+] > E[Xo]
and E[X,a7] < E[Xp], respectively.
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Martingale Convergence Theorem

For any a, b € R with a < b, let Un(a, b) = sup{m > 1: 72, < n},where 79 =0,
Tokr1 = inf{n > 1, : Xp < a} and 7m0 = inf{n > 141 : Xa > b}.

(Upcrossing Inequality) For a supermartingale {(Xn, Fn)},

E[Un(a, b)] < W,Vn >1,a>b.

(Theorem) Let {(X,,,]-',,)} be a supermartingale with sup, E[X, ] < co. Then,
Xoo = limp— oo Xn € L.

{Xn} is uniformly integrable if limpy_, o sup, E[| Xn|1{|x,|>m}] = O.

(Martingale Convergence Theorem) Let X = {(X,, Fr)} be a martingale. Then, X
contains the last element Xoo € L! and E[Xeo|Fn] = Xn, Vn > 1iff {Xn} is uniformly
integrable.

@ The above hold for sub-/super- martingale by replacing with {X;/} or {X, } is
uniformly integrable, respectively.
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