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I The problem of reconstructing the unknown x from N of its distorted sequences,
y (1), · · · , y (N), has many applications, e.g., DNA ancestral reconstruction:

Question
(1) What is the minimum value of N for reconstruction?
(2) How to efficiently reconstruct x from y (1), · · · , y (N)?
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Communication model

I Assume x ∈ V = An
q and Y =

[
y (1), · · · , y (N)

]
where each y (i) ∈ Am

r .

I Measure accuracy by Hamming distance dH(x ,F (Y )) ≤ d .
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I (n, t)-substitution channel:

I NH(V , t) = q
∑t−1

i=0

(
n − 1
i

)
(q − 1)i

I F (Y ) exactly recovers xi = majority(y
(1)
i , · · · , y (N)

i )

Lemma ∀a ∈ Aq, a 6= xi ,
∣∣{v ∈ Bt(x ,H) : vi = a}

∣∣ ≤∑t−1
j=0

(
n − 1
j

)
(q − 1)j .
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I Idea: N = NH(V , t) + 1 for exact reconstruction from distinct y (1), · · · , y (N),
where

NH(V , t) := max
v ,z∈V ,v 6=z

|Bt(v ,H) ∩ Bt(z ,H)|. (1)

Table: Exact reconstruction results for (n, t)-combinatorial channe. All require N = nΩ(t).

error-type case reconstructor F
substitution all majority

transposition q = 2 thresholding

insertion exactly t errors [10]

deletion exactly t errors [10]

I Graph-theoretic approach [11, 15] generalizes to the problem of reconstruction
within dH(x ,F (Y )) ≤ d .



Combinatorial channel: recent trends

I Exact reconstruction for x ∈ V ⊆ An
q:

I [14, 13] - insertion errors in insertion/deletion-correcting code
I [5] - deletion errors in single-deletion code

I Practical limit on the # of repeated transmissions Ñ:
I [8] - list-decoding in the regime when Ñ < N
I [9, 4] - design of codebook V such that N < Ñ

I Combination of different types of errors [3]

I Exact reconstruction in non-identical channels [7]



Probabilistic channel: discrete memoryless channel

I Given a DMC C with transition probability PC ∈ [0, 1]q×q and δ > 0, d ≥ 0.

I Find the smallest N = NC (n, d , δ) and a reconstructor F such that for any Y ,

P(dH(x ,F (Y )) ≤ d) ≥ 1− δ.



Probabilistic channel: discrete memoryless channel

I Theorem Let δ = δ(n) > 0 and d = d(n) ≥ 0 be such that δ → 0, d/n→ 0 as
n→∞. Then, as n→∞,

NC (n, d , δ)→
ln n

d+1 + ln δ−1

d+1

lnα−1
,

where α ∈ (0, 1) depends only on PC .

I Comparison with (n, t)-substitution channel:
I (Combinatorial) Exact reconstruction for t = Θ(n): N = nΩ(n).
I (Probablistic) Exact reconstruction succeeds w.p. ≥ 1− δ: N = Θ(ln n).



Probabilistic channel: recent trends

I The state-of-the-art result of deletion channel (a.k.a. trace reconstruction) for
q = 2:

lowerbound upperbound

worst-case1 Ω̃(n3/2) [2] eÕ(n1/5) [1]

average-case2 Ω( ln5/2 n
(ln ln n)7 ) [2] eO(ln1/3 n) [6]

I Circular trace reconstruction [12]

1Worst-case guarantee: reconstruction in high probability for any x ∈ An
2

2Average-case guarantee: reconstruction in higih probability for x drawn uniformly from An
2



Conclusion

I This paper initiated the study of the problem of efficient sequence reconstruction
which naturally arises in many fields.

I For both combinatorial and probablistic channels, the proposed approach has
inspired many future works and leaves many open problems.
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