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Motivation

> Given a set V with minimum Hamming distance 27 + 1.

x €V —— channel —— ¥y

» With 1 transmission of x € V, < 7 errors can be corrected.



Motivation

» Given a set V with minimum Hamming distance 27 + 1.

x €V —— channel —— ¥y

» With 1 transmission of x € V, < 7 errors can be corrected.

> This paper studies the idea of correcting > 7 errors by repeated transmissions of x.



Motivation

» The problem of reconstructing the unknown x from N of its distorted sequences,
y@ .. y(N) "has many applications, e.g., DNA ancestral reconstruction:

standard
ABCDEFGHIJKL
ABCDEFGHI|JKL ABCD[EFGHIJ/IKL

A[BCDEFGH|IJKL. ABCD[EFGHIJKL
Arrowhead Klamath
ABCIHGFEDJKL ABCDJIHGFEKL

Pikes Peak Sequoia
AB GFEDIKL AHGFEDCBIJKL ABCDFEGHIJKL
Chiricahua IT Cowichan
ABHICGFEDJKL ABCDJIHGFKEL

ABCDJIHGF[EKIL




Motivation

» The problem of reconstructing the unknown x from N of its distorted sequences,
y@ ... y(M) has many applications, e.g., DNA ancestral reconstruction:

standard
ABCDEFGHIJKL
ABC[DEFGHI|JKL ABCD[EFGHIJJKL

A[BCDEFGH|UUKL ABCD[EF/GHIJKL
Arrowhead Klamath
ABCIHGFEDJKL ABCDJIHGFEKL

Pikes Peak Sequoia
AB GFEDJKL AHGFEDCBUKL ABCDFEGHIKL ABCDIJIHGF[EKIL
Chiricahua IT Cowichan
ABHICGFEDJKL ABCDJIHGFKEL

Question

(1) What is the minimum value of N for reconstruction?
(2) How to efficiently reconstruct x from y() ... y(N)?
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Communication model

channel y(l\
channel y(m

z . recon-sl.?tructor F=F (Y)
channel y(N )

> Assume x € V =A% and Y = [y, ... y(M] where each y() € A"
» Measure accuracy by Hamming distance dy(x, F(Y)) < d.



Combinatorial channel

» (n, t)-combinatorial channel: has < t single errors from H in 1 transmission
» H: the set of all single errors of the same type



Combinatorial channel

» (n, t)-combinatorial channel: has < t single errors from H in 1 transmission

» Bi(v, H): the set of all words achievable from v by < t single errors.



Combinatorial channel

» (n, t)-combinatorial channel: has < t single errors from H in 1 transmission

» B:(v, H): the set of all words achievable from v by < t single errors.

» ldea: N = Ny(V,t)+ 1 for exact reconstruction from distinct y(l)7 ‘e ,y(N),
where
Nu(V.8) = | max [Bulv, H) N Bulz H)|. (1)
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Combinatorial channel

» Idea: N = Ny(V,t)+ 1 for exact reconstruction from distinct y@ oy (N
where
Nu(V,t) = V,zgn\??‘(/#z |B:(v, H) N Be(z, H)|. (1)

» (n, t)-substitution channel:

> NH(Vat):qu_ol( n71 >(C/—1)i

» F(Y) exactly recovers x; = majority(y,.(l), e 7y,.(N))

Lemma Va € A, a # X;, ]{v € Be(x,H) : vi = a}‘ < Zj;é < n;l )(q—l)f.



Combinatorial channel

» ldea: N = Ny(V,t)+ 1 for exact reconstruction from distinct y@ oy (V)
where
Ny(V,t) = m\?x?ﬁ |Be(v, H) N Be(z, H)|. (1)
v,zeV,v#£z

Table: Exact reconstruction results for (n, t)-combinatorial channe. All require N = n(®).

error-type case reconstructor F
substitution  all majority
transposition q =2 thresholding
insertion exactly t errors [10]

deletion exactly t errors [10]




Combinatorial channel

» Idea: N = Ny(V,t)+ 1 for exact reconstruction from distinct y(l), ‘e ,y(N),
where
Nu(V.8) = | max [Bulv, H) N Bulz. H)|. (1)

Table: Exact reconstruction results for (n, t)-combinatorial channe. All require N = n(®).

error-type case reconstructor F
substitution  all majority
transposition g =2 thresholding
insertion exactly t errors [10]
deletion exactly t errors [10]

» Graph-theoretic approach [11, 15] generalizes to the problem of reconstruction
within dy(x, F(Y)) < d.



Combinatorial channel: recent trends

» Exact reconstruction for x € V C Ag:
» [14, 13] - insertion errors in insertion/deletion-correcting code
> [5] - deletion errors in single-deletion code
Practical limit on the # of repeated transmissions N:
> [8] - list-decoding in the regime when N < N ;
> [9, 4] - design of codebook V such that N < N

Combination of different types of errors [3]

v

v

» Exact reconstruction in non-identical channels [7]



Probabilistic channel: discrete memoryless channel

» Given a DMC C with transition probability Pc € [0,1]9%9 and § > 0,d > 0.
» Find the smallest N = N¢(n, d,d) and a reconstructor F such that for any Y,

P(du(x, F(Y)) < d) >1— 6.



Probabilistic channel: discrete memoryless channel

» Theorem Let 6 = d(n) > 0 and d = d(n) > 0 be such that 6 — 0,d/n — 0 as
n— oo. Then, as n — o0,

-1
In =~ + Ind
Ne(n,d,8) — leﬂ
Ina—

)

where a € (0,1) depends only on Pc.

» Comparison with (n, t)-substitution channel:

» (Combinatorial) Exact reconstruction for t = ©(n): N = n®(").
» (Probablistic) Exact reconstruction succeeds w.p. >1—3: N = ©(Inn).



Probabilistic channel: recent trends

» The state-of-the-art result of deletion channel (a.k.a. trace reconstruction) for
qg=2:

lowerbound upperbound
worst-case! Q(n 3/2) [2] O(n'”?) [1]
average-case? ((InIn n)7) 2] O(In'"n) [6]

» Circular trace reconstruction [12]

"Worst-case guarantee: reconstruction in high probability for any x € A3
2Average-case guarantee: reconstruction in higih probability for x drawn uniformly from Aj



Conclusion

» This paper initiated the study of the problem of efficient sequence reconstruction
which naturally arises in many fields.

» For both combinatorial and probablistic channels, the proposed approach has
inspired many future works and leaves many open problems.
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