Efficient Reconstruction of Sequences

Vladimir I. Levenshtein

Presented by Ruo-Chun Tzeng

IEEE Transactions on Information Theory (2001)

▶ Given a set V with minimum Hamming distance $2\tau + 1$.

▶ With 1 transmission of $x \in V$, $\leq \tau$ errors can be corrected.

• Given a set V with minimum Hamming distance $2\tau + 1$.

- ▶ With 1 transmission of $x \in V$, $\leq \tau$ errors can be corrected.
- ▶ This paper studies the idea of correcting $> \tau$ errors by repeated transmissions of x.

The problem of reconstructing the unknown x from N of its distorted sequences, $y^{(1)}, \dots, y^{(N)}$, has many applications, e.g., DNA ancestral reconstruction:

The problem of reconstructing the unknown x from N of its distorted sequences, $y^{(1)}, \dots, y^{(N)}$, has many applications, e.g., DNA ancestral reconstruction:

Question

- (1) What is the minimum value of N for reconstruction?
- (2) How to efficiently reconstruct x from $y^{(1)}, \dots, y^{(N)}$?

Outline

- Communication model
- ▶ Combinatorial channels ($\leq t$ errors in 1 transmission)
 - ► The idea for exact reconstruction
 - Recent trends
- Probabilistic channels
 - Discrete memoryless channel
 - Recent trends
- Conclusion

Communication model

- ▶ Assume $x \in V = A_q^n$ and $Y = [y^{(1)}, \dots, y^{(N)}]$ where each $y^{(i)} \in A_r^m$.
- ▶ Measure accuracy by Hamming distance $d_H(x, F(Y)) \le d$.

- \blacktriangleright (n, t)-combinatorial channel: has $\le t$ single errors from H in 1 transmission
 - ► H: the set of all single errors of the same type

- \blacktriangleright (n,t)-combinatorial channel: has $\leq t$ single errors from H in 1 transmission
- ▶ $B_t(v, H)$: the set of all words achievable from v by $\leq t$ single errors.

- (n, t)-combinatorial channel: has $\leq t$ single errors from H in 1 transmission
- ▶ $B_t(v, H)$: the set of all words achievable from v by $\leq t$ single errors.
- ▶ Idea: $N = N_H(V, t) + 1$ for exact reconstruction from distinct $y^{(1)}, \dots, y^{(N)}$, where

$$N_{H}(V,t) := \max_{v,z \in V, v \neq z} |B_{t}(v,H) \cap B_{t}(z,H)|. \tag{1}$$

▶ Idea: $N = N_H(V, t) + 1$ for exact reconstruction from distinct $y^{(1)}, \dots, y^{(N)}$, where

$$N_H(V,t) := \max_{v,z \in V, v \neq z} |B_t(v,H) \cap B_t(z,H)|. \tag{1}$$

- \triangleright (n, t)-substitution channel:
 - $N_H(V,t) = q \sum_{i=0}^{t-1} \binom{n-1}{i} (q-1)^i$
 - ▶ F(Y) exactly recovers $x_i = \text{majority}(y_i^{(1)}, \dots, y_i^{(N)})$

Lemma
$$\forall a \in A_q, a \neq x_i, \ \left| \{ v \in B_t(x, H) : v_i = a \} \right| \leq \sum_{j=0}^{t-1} \binom{n-1}{j} (q-1)^j.$$

▶ Idea: $N = N_H(V, t) + 1$ for exact reconstruction from distinct $y^{(1)}, \dots, y^{(N)}$, where

$$N_H(V,t) := \max_{v,z \in V, v \neq z} |B_t(v,H) \cap B_t(z,H)|. \tag{1}$$

Table: Exact reconstruction results for (n, t)-combinatorial channe. All require $N = n^{\Omega(t)}$.

error-type	case	reconstructor F
substitution	all	majority
transposition	q = 2	thresholding
insertion	exactly t errors	[10]
deletion	exactly t errors	[10]

▶ Idea: $N = N_H(V, t) + 1$ for exact reconstruction from distinct $y^{(1)}, \dots, y^{(N)}$, where

$$N_H(V,t) := \max_{v,z \in V, v \neq z} |B_t(v,H) \cap B_t(z,H)|. \tag{1}$$

Table: Exact reconstruction results for (n, t)-combinatorial channe. All require $N = n^{\Omega(t)}$.

error-type	case	reconstructor F
substitution	all	majority
transposition	q=2	thresholding
insertion	exactly t errors	[10]
deletion	exactly t errors	[10]

▶ Graph-theoretic approach [11, 15] generalizes to the problem of reconstruction within $d_H(x, F(Y)) \le d$.

Combinatorial channel: recent trends

- ▶ Exact reconstruction for $x \in V \subseteq A_q^n$:
 - ▶ [14, 13] insertion errors in insertion/deletion-correcting code
 - ▶ [5] deletion errors in single-deletion code
- ▶ Practical limit on the # of repeated transmissions \tilde{N} :
 - lacksquare [8] list-decoding in the regime when $ilde{N} < N$
 - ▶ [9, 4] design of codebook V such that $N < \tilde{N}$
- ► Combination of different types of errors [3]
- Exact reconstruction in non-identical channels [7]

Probabilistic channel: discrete memoryless channel

- ▶ Given a DMC C with transition probability $P_C \in [0,1]^{q \times q}$ and $\delta > 0, d \geq 0$.
- ▶ Find the smallest $N = N_C(n, d, \delta)$ and a reconstructor F such that for any Y,

$$\mathbb{P}(d_H(x, F(Y)) \leq d) \geq 1 - \delta.$$

Probabilistic channel: discrete memoryless channel

▶ Theorem Let $\delta = \delta(n) > 0$ and $d = d(n) \ge 0$ be such that $\delta \to 0, d/n \to 0$ as $n \to \infty$. Then, as $n \to \infty$,

$$N_C(n,d,\delta) \rightarrow \frac{\ln \frac{n}{d+1} + \frac{\ln \delta^{-1}}{d+1}}{\ln \alpha^{-1}},$$

where $\alpha \in (0,1)$ depends only on P_C .

- \triangleright Comparison with (n, t)-substitution channel:
 - (Combinatorial) Exact reconstruction for $t = \Theta(n)$: $N = n^{\Omega(n)}$.
 - ▶ (Probablistic) Exact reconstruction succeeds w.p. $\geq 1 \delta$: $N = \Theta(\ln n)$.

Probabilistic channel: recent trends

The state-of-the-art result of deletion channel (a.k.a. trace reconstruction) for q = 2:

	lowerbound	upperbound
worst-case ¹	$\tilde{\Omega}(n^{3/2})$ [2]	$e^{ ilde{\mathcal{O}}(n^{1/5})}$ [1]
average-case ²	$\Omega(\frac{\ln^{5/2} n}{(\ln \ln n)^7}) [2]$	$e^{\mathcal{O}(\ln^{1/3} n)}$ [6]

► Circular trace reconstruction [12]

¹Worst-case guarantee: reconstruction in high probability for any $x \in A_2^n$

²Average-case guarantee: reconstruction in high probability for x drawn uniformly from $A_2^n \equiv x \equiv x = x = x$

Conclusion

- ► This paper initiated the study of the problem of efficient sequence reconstruction which naturally arises in many fields.
- ► For both combinatorial and probablistic channels, the proposed approach has inspired many future works and leaves many open problems.

Reference I

[1] Zachary Chase. New upper bounds for trace reconstruction. arXiv preprint arXiv:2009.03296, 2020.

[2] Zachary Chase. New lower bounds for trace reconstruction. In Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. Institut Henri Poincaré. 2021.

- [3] Yeow Meng Chee, Han Mao Kiah, Alexander Vardy, Eitan Yaakobi, et al. Coding for racetrack memories. IEEE Transactions on Information Theory, 2018.
- [4] Johan Chrisnata, Han Mao Kiah, and Eitan Yaakobi. Optimal reconstruction codes for deletion channels. In *Proc. of ISITA*. IEEE, 2020.

Reference II

- [5] Ryan Gabrys and Eitan Yaakobi. Sequence reconstruction over the deletion channel. IEEE Transactions on Information Theory, 2018.
- [6] Nina Holden, Robin Pemantle, and Yuval Peres.
 Subpolynomial trace reconstruction for random strings and arbitrary deletion probability.
 In Proc. of COLT, PMLR, 2018.

In Proc. of COLT. PMLR, 2018.

- [7] Michal Horovitz and Eitan Yaakobi. Reconstruction of sequences over non-identical channels. IEEE Transactions on Information Theory, 2018.
- [8] Ville Junnila, Tero Laihonen, and Tuomo Lehtilä.
 On levenshtein's channel and list size in information retrieval.

 IEEE Transactions on Information Theory, 2020.

Reference III

- [9] Han Mao Kiah, Tuan Thanh Nguyen, and Eitan Yaakobi. Coding for sequence reconstruction for single edits. In *Proc. of ISIT*. IEEE, 2020.
- [10] Vladimir I Levenshtein. Efficient reconstruction of sequences from their subsequences or supersequences. Journal of Combinatorial Theory, 2001.
- [11] Vladimir I Levenshtein and Johannes Siemons. Error graphs and the reconstruction of elements in groups. Journal of Combinatorial Theory, 2009.
- [12] Shyam Narayanan and Michael Ren.
 Circular trace reconstruction.
 In Proc. of ITCS. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Reference IV

- [13] Frederic Sala, Ryan Gabrys, Clayton Schoeny, and Lara Dolecek. Exact reconstruction from insertions in synchronization codes. *IEEE Transactions on Information Theory*, 2017.
- [14] Frederic Sala, Ryan Gabrys, Clayton Schoeny, Kayvon Mazooji, and Lara Dolecek. Exact sequence reconstruction for insertion-correcting codes. In *Proc. of ISIT*. IEEE, 2016.
- [15] Eitan Yaakobi, Moshe Schwartz, Michael Langberg, and Jehoshua Bruck. Sequence reconstruction for grassmann graphs and permutations. In *Proc. of ISIT*. IEEE, 2013.