Closing the Computational-Statistical Gap in BAI for Combinatorial Semi-bandits **Ruo-Chun Tzeng**¹, Po-An Wang¹, Alexandre Proutiere¹ Chi-Jen Lu²

Combinatorial BAI with semi-bandit feedback

Input: K arms $(\nu_k)_{k \in [K]}$ with mean $\mu \in \mathbb{R}^K$ and $\mathcal{X} \subseteq \{0, 1\}^K$. **Example:** Gaussian reward $\nu_k = \mathcal{N}(\mu_k, 1), \forall k \in$

- Rule: At each round $t \in \mathbb{N}$, the learner pulls an action $\mathbf{x}(t) \in \mathcal{X}$ and observe $y_k(t) \sim \nu_k$ iff $x_k(t) = 1$, and returns her estimated best action $\hat{i} \in \mathcal{X}$ when she decides to terminate at round τ .
- Goal: Design a δ -PAC learning strategy s.t. the best action $i^*(\mu) \in \operatorname{argmax} \langle \mu, \mathbf{x} \rangle$ is identified w.p. $\geq 1 - \delta$ and $\mathbb{P}_{\mu}[\tau < \infty] = 1$ while minimizing $\mathbb{E}_{\mu}[\tau]$.

Prior works: a computational-statistical gap

Any δ -PAC algorithm satisfies $\mathbb{E}_{\mu}[\tau] \geq T^{\star}(\mu) \mathrm{kl}(\delta, 1-\delta)$, where

$$T^{\star}(\mu)^{-1} = \sup_{\omega \in \Sigma} F_{\mu}(\omega) \text{ with } F_{\mu}(\omega) = \inf_{\lambda \in \mathsf{Alt}(\mu)} \sum_{k=1}^{\kappa} \frac{\omega_k(\mu_k - \mu_k)}{2}$$

Track-and-Stop [6] is statistically optimal but requires to repeatedly solve $T^{\star}(\hat{\mu}(t-1))^{-1} \Rightarrow$ computationally inefficient.

FWS [8] at the FW-update round has to solve a potentially $\mathcal{O}(2^{\kappa})$ many convex programs \Rightarrow computationally inefficient

CombGame [7] is MCP-oracle efficient and statistically optimal \Rightarrow left open the design of an efficient MCP-oracle

Established by the European Comm

¹EECS, KTH Royal Institute of Technology, Sweden ²Institute of Information Science, Academia Sinica, Taiwan

$$(\lambda_k)^2$$

Designing efficient MCP based on a structural observation Let $f_{\mathbf{x}}(\boldsymbol{\omega}, \boldsymbol{\mu}) = \inf_{\boldsymbol{\lambda} \in \mathbb{R}: \langle \boldsymbol{i}^{\star}(\boldsymbol{\mu}) - \boldsymbol{x}, \boldsymbol{\lambda} \rangle < 0} \sum_{k=1}^{K} \frac{\omega_{k}(\mu_{k} - \lambda_{k})^{2}}{2} \text{ s.t. } F_{\boldsymbol{\mu}}(\boldsymbol{\omega}) = \min_{\boldsymbol{x} \neq \boldsymbol{i}^{\star}(\boldsymbol{\mu})} f_{\boldsymbol{x}}(\boldsymbol{\omega}, \boldsymbol{\mu}).$ Property of f_x and its Lagrangian dual $g_{\omega,\mu}$: $f_{\boldsymbol{x}}(\boldsymbol{\omega},\boldsymbol{\mu}) = \max_{\alpha \geq 0} g_{\boldsymbol{\omega},\boldsymbol{\mu}}(\boldsymbol{x},\alpha)$

 $g_{\omega,\mu}(\mathbf{x},\alpha)$ is linear in \mathbf{x} and concave in α These properties $\Rightarrow F_{\mu}(\omega) = \min_{\mathbf{x} \neq \mathbf{i}^{*}(\mu)} \max_{\alpha \geq 0} g_{\omega,\mu}(\mathbf{x}, \alpha)$ as a two-player zero-sum game. We not only want to estimate $F_{\mu}(\omega)$ but also the *equilibrium* action \mathbf{x}_{e} s.t. $F_{\mu}(\omega) = \max_{\alpha \geq 0} g_{\omega,\mu}(\mathbf{x}_{e}, \alpha)$. This rules out many existing results from applying. $\succ \mathbf{x}_e$ is required to solve $\max_{\omega \in \Sigma} F_{\mu}(\omega)$ by the first-order methods \triangleright Last-iterate convergence [1, 3] are mostly for saddle-point problems

Algorithm 1: (ϵ, θ) -MCP (ω, μ)

for $n = 1, 2, \cdots$ do (Follow-the-Perturbed-Leader) \mathcal{Z}_n $oldsymbol{x}^{(n)} \in \operatorname*{argmin}_{x
eq oldsymbol{i}^{\star}(oldsymbol{\mu})} igg(\sum_{m=1}^{n-1} g_{oldsymbol{\omega},oldsymbol{\mu}}$ (Best-Response) $\alpha^{(n)} \in \operatorname{argmax} g$ if $\sqrt{n} > \frac{c_{\theta}(1+\epsilon)}{\epsilon \hat{F}}$, where $\begin{cases} \hat{F} = \\ n_{\star} \in \end{cases}$ then return $(\hat{F}, \mathbf{x}^{(n_{\star})})$;

end

(Theorem 1) Let
$$\epsilon, \theta \in (0, 1)$$
 and $(\omega, \mu) \in \Sigma_+ \times \Lambda$.
 $\blacktriangleright \mathbb{P}_{\mu} \Big[F_{\mu}(\omega) \leq \hat{F} \leq (1 + \epsilon) F_{\mu}(\omega) \Big] \geq 1 - \theta$
 \triangleright the number of i^* -oracle calls: $\mathcal{O} \left(\frac{K^3 D^5 \ln K \ln \theta^{-1} ||\mu||_{\infty}^4 ||\omega^{-1}||_{\infty}^2}{\epsilon^2 F_{\mu}(\omega)^2} \right)$

(known by [2])

(our observation)

$$\eta_n \sim \exp(1)^K \text{ and } \eta_n = rac{c_0}{\sqrt{n}}$$

 $\sigma_{\mathcal{S},\mu}(\mathbf{x}, \alpha^{(m)}) + rac{\langle \boldsymbol{\mathcal{Z}}_n, \mathbf{x} \rangle}{\eta_n} \end{pmatrix}$

$$\mathbf{x}_{\boldsymbol{\omega},\boldsymbol{\mu}}(\mathbf{x}^{(n)},\alpha)$$

$$= g_{\boldsymbol{\omega},\boldsymbol{\mu}}(\boldsymbol{x}^{(n_{\star})}, \alpha^{(n_{\star})})$$

= argmin_{m \leq n} g_{\boldsymbol{\omega},\boldsymbol{\mu}}(\boldsymbol{x}^{(m)}, \alpha^{(m)})

Our Perturbed Frank-Wolfe Sampling (P-FWS)

We use stochastic smoothing [5, 4] to overcome the nonsmoothness of F_{μ} as: all we need is i^* -oracle and its required graident can be evaluated by envelope theorem [8]. The smoothed objective $\overline{F}_{\mu,\eta}(\omega) = \mathbb{E}_{\mathbb{Z}\sim \text{Uniform}(B_2)}[F_{\mu}(\omega + \eta \mathbb{Z})]$ satisfies: $\blacktriangleright \nabla \bar{F}_{\mu,\eta}(\boldsymbol{\omega}) = \mathbb{E}_{\boldsymbol{\mathcal{Z}} \sim \text{Uniform}(B_2)}[\nabla F_{\mu}(\boldsymbol{\omega} + \eta \boldsymbol{\mathcal{Z}})]$ $\blacktriangleright \bar{F}_{\mu,\eta} \text{ is } \frac{\ell K}{n} \text{-smooth and } \bar{F}_{\mu,\eta}(\omega) \xrightarrow{\eta\downarrow 0} F_{\mu}(\omega)$

High-level design of P-FWS

pull each $\boldsymbol{x} \in \mathcal{X}_0$ once

References

- Proc. of COLT, 2016.
- optimization. *Proc. of ITCS*, 2019.
- optimization. SIAM Journal on Optimization, 2012.
- *COLT*, 2016.
- NeurIPS, 2021.

digital futures

Let \mathcal{X}_0 be a set s.t. $\forall k \in [K]$, there exists $\mathbf{x} \in \mathcal{X}_0$ s.t. $x_k = 1$.

P-FWS alternate between two phases:

(to avoid high cost and boundary cases) $\left(\begin{array}{c} \mathsf{pull} \ \pmb{x}(t) \in \mathsf{argmax}_{\pmb{x} \in \mathcal{X}} \left\langle \nabla \bar{F}_{\hat{\pmb{\mu}}(t-1),\eta_t}(\hat{\pmb{\omega}}(t-1)), \pmb{x} \right\rangle \text{ (ideal FW update)} \right)$

(Theorem 2) Let $\mu \in \Lambda$ and $\delta \in (0, 1)$. P-FWS is δ -PAC, finishes in finite time, $\mathbb{P}_{\mu}[\limsup_{\delta \to 0} \frac{\tau}{\ln \delta^{-1}} \leq T^{\star}(\mu)] = 1, \mathbb{E}_{\mu}[\tau] \text{ is bounded by Poly}(K) \text{ in }$ moderate-confidence regime and achieves the minimal in high-confidence regime, and the total number of i^* -oracle calls is bounded by Poly(K).

[1] K. Abe, K. Ariu, M. Sakamoto, K. Toyoshima, and A. Iwasaki. Last-iterate convergence with full-and noisy-information feedback in two-player zero-sum games. In *Proc. of AISTATS*, 2023.

[2] L. Chen, A. Gupta, and J. Li. Pure exploration of multi-armed bandit under matroid constraints. In

[3] C. Daskalakis and I. Panageas. Last-iterate convergence: Zero-sum games and constrained min-max

[4] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochastic

[5] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In *Proc. of SODA*, 2005.

[6] A. Garivier and E. Kaufmann. Optimal best arm identification with fixed confidence. In *Proc. of*

[7] M. Jourdan, M. Mutny, J. Kirschner, and A. Krause. Efficient pure exploration for combinatorial bandits with semi-bandit feedback. In Proc. of ALT, 2021.

[8] P.-A. Wang, R.-C. Tzeng, and A. Proutiere. Fast pure exploration via frank-wolfe. In *Proc. of*

