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Combinatorial BAI with semi-bandit feedback
Input: K arms (νk)k∈[K ] with mean µ ∈ RK and X ⊆ {0, 1}K .

Rule: At each round t ∈ N, the learner pulls an action x(t) ∈ X and observe
yk(t) ∼ νk iff xk(t) = 1, and returns her estimated best action ı̂ ∈ X when she
decides to terminate at round τ .

Goal: Design a δ-PAC learning strategy s.t. the best action i ⋆(µ) ∈ argmax ⟨µ, x⟩
is identified w.p. ≥ 1 − δ and Pµ[τ < ∞] = 1 while minimizing Eµ[τ ].

Prior works: a computational-statistical gap
Any δ-PAC algorithm satisfies Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ), where

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωk(µk − λk)2

2 .

Track-and-Stop [6] is statistically optimal but requires to repeatedly solve
T ⋆(µ̂(t − 1))−1 ⇒ computationally inefficient.

FWS [8] at the FW-update round has to solve a potentially O(2K) many convex
programs ⇒ computationally inefficient

CombGame [7] is MCP-oracle efficient and statistically optimal
⇒ left open the design of an efficient MCP-oracle

Designing efficient MCP based on a structural observation

Let fx(ω, µ) = inf
λ∈R:⟨i ⋆(µ)−x,λ⟩<0

K∑
k=1

ωk(µk − λk)2

2 s.t. Fµ(ω) = minx ̸=i ⋆(µ) fx(ω, µ).

Property of fx and its Lagrangian dual gω,µ:
fx(ω, µ) = max

α≥0
gω,µ(x, α) (known by [2])

gω,µ(x, α) is linear in x and concave in α (our observation)
These properties ⇒ Fµ(ω) = min

x ̸=i ⋆(µ)
max
α≥0

gω,µ(x, α) as a two-player zero-sum game.

We not only want to estimate Fµ(ω) but also the equilibrium action xe s.t.
Fµ(ω) = maxα≥0 gω,µ(xe, α). This rules out many existing results from applying.
▶ xe is required to solve maxω∈Σ Fµ(ω) by the first-order methods
▶ Last-iterate convergence [1, 3] are mostly for saddle-point problems

(Theorem 1) Let ϵ, θ ∈ (0, 1) and (ω, µ) ∈ Σ+ × Λ.
▶ Pµ

[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ

▶ the number of i ⋆-oracle calls: O
(

K 3D5 ln K ln θ−1∥µ∥4
∞∥ω−1∥2

∞
ϵ2Fµ(ω)2

)

Our Perturbed Frank-Wolfe Sampling (P-FWS)
We use stochastic smoothing [5, 4] to overcome the nonsmoothness of Fµ as: all we
need is i ⋆-oracle and its required graident can be evaluated by envelope theorem [8].
The smoothed objective F̄µ,η(ω) = EZ∼Uniform(B2)[Fµ(ω + ηZ)] satisfies:
▶ ∇F̄µ,η(ω) = EZ∼Uniform(B2)[∇Fµ(ω + ηZ)]
▶ F̄µ,η is ℓK

η -smooth and F̄µ,η(ω) η↓0−−→ Fµ(ω)

(Theorem 2) Let µ ∈ Λ and δ ∈ (0, 1). P-FWS is δ-PAC, finishes in finite time,
Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1, Eµ[τ ] is bounded by Poly(K ) in

moderate-confidence regime and achieves the minimal in high-confidence regime, and
the total number of i ⋆-oracle calls is bounded by Poly(K ).
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