Discovering conficting groups in signed networks

Aalto University
Ruo-Chun Tzeng ${ }^{1}$ Bruno Ordozgoiti ${ }^{2}$
Aristides Gionis ${ }^{1,2}$
${ }^{1}$ KTH Royal Institute of Technology, Sweden

Detecting conflicting groups
Given a signed network, our goal is to detect k conflicting groups, which are k disjoin ode subsets that are mostly positively $(+)$ linked internally and mostly negatively $(-)$ linked to the other $k-1$ groups.

Challenge: There may exist neutral nodes whose interactions are inconsistent with the structure of the conflicting groups. Therefore, methods that partition the entire network, such as correlation clustering [1] and signed clustering [5] are inefficient By extending the formulation of the 2 -polarized-clustering problem (2PC) [3], given an integer k as input, the k conflicting groups can be detected by

$$
\begin{equation*}
\max _{S_{1}, \ldots S_{k}} \frac{\sum_{h \in[k]}\left(\left|E_{+}\left(S_{h}\right)\right|-\left|E_{-}\left(S_{h}\right)\right|\right)+\frac{1}{k-1} \sum_{h \neq k|k| k]}\left(\left|E_{-}\left(S_{h}, S_{\ell}\right)\right|-\left|E_{+}\left(S_{h}, S_{\ell}\right)\right|\right)}{\left|U_{h \in[k]} S_{h}\right|}, \tag{1}
\end{equation*}
$$

where $E\left(S_{h}, S_{\ell}\right)=\left\{(i, j) \in E: i \in S_{h}, j \in S_{\ell}\right\}$ and $E\left(S_{h}\right)=E\left(S_{h}, S_{h}\right)$.
Our approach: Spectral Conflicting Groups
We introduce a group indicator matrix $\mathbf{X} \in\{0,1\}^{n \times k}$, where $\mathbf{X}_{i,:}=\left(\mathbf{I}_{k}\right)_{j ;:}$ if node $i \in S_{j}$. Using the Laplacian $\mathbf{L}_{k}=k \mathbf{I}-\mathbf{1}_{k \times k}$ and exploiting its spectral properties, the objective in Equation (1) is equivalent to

$$
\operatorname{Max}_{\mathbf{Y} \in \mathbb{R}^{n}(x<k) \backslash\{0\}}^{\operatorname{Tr}\left(\mathbf{Y}^{\top} \mathbf{A} \mathbf{Y}\right)} \operatorname{Tr}\left(\mathbf{Y}^{\top} \mathbf{Y}\right) \quad \text { subject to } \quad \mathbf{Y}_{i, j}= \begin{cases}c_{j}(k-j), & \text { if } i \in S_{j} \\ 0, & \text { if } i \in \cup_{h=1}^{j-1} S_{h} \text { or } i \notin \cup_{h \in[k]} S_{h} . \\ -c_{j}, & \text { if } i \in \cup_{h=j+1}^{h} S_{h}\end{cases}
$$

Main Idea: Assuming that S_{1}, \ldots, S_{j-1} have been determined, we find S_{j} by solving an
instance of the Max-DRQ problem.

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{\mathbf{x} \in\left\{\{-j, j, 0,1\}^{n}\right.}{\operatorname{argmax}} \frac{\mathbf{x}^{\top} \mathbf{A}^{(j-1)} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}} . \tag{2}
\end{equation*}
$$

Let $\mathbf{A}^{(j-1)}$ be the adjacency matrix after removing $\cup_{h \in[j-1]} S_{h}$ from G, with $\mathbf{A}^{(0)}=\mathbf{A}$.
By solving Equation (2) we find $S_{j}=\left\{i: x_{i}^{*}=k-j\right\}$.
We repeat the process to find the remaining conflicting groups S_{j+1}, \ldots, S_{k}

Solve-Max-DRQ

The Max-DRQ problem is APX-Hard [2]. The problem has been studied only for $k=2$ There exist an SDP-based $\tilde{\mathcal{O}}\left(n^{1 / 3}\right)$-approximation algorithm [2] and a more practical $\mathcal{O}\left(n^{1 / 2}\right)$-approximation algorithm [3]. For $k>2$, no algorithm for Max-DRQ is known

Our approach is based on rounding the leading eigenvector \mathbf{v} of $\mathbf{A}^{(j)}$ to a vector in
$\mathbf{r} \in\{k-j, 0,-1\}^{n}$. We use the following rounding schemes
MinimumAngle (MA) Set $\mathbf{r}=\operatorname{argmin}_{\mathbf{u} \in\{k-j, 0,-1\}^{n}} \sin \theta(\mathbf{v}, \mathbf{u})$
The minimizer can be found in time $\mathcal{O}\left(n^{2}\right)$.

- For practical considerations in the experiments we use a $\mathcal{O}(n)$ heuristic method

RandomRound (R) Each entry of \mathbf{r} is rounded by
$\mathbf{r}_{i}= \begin{cases}(k-j), & \text { with prob. }\left|\mathbf{v}_{i}\right| /(k-j) \text { if } v_{i}>0 \\ -1, & \text { with prob. }\left|\boldsymbol{v}_{i}\right| \text { if } v_{i}<0\end{cases}$
This randomized algorithm gives an $(k-j) n^{1 / 2}$-approximation algorithm to the
Max-DRQ problem, which generalizes the previous result for the 2PC problem [3]
Theorem Let $(\mathbf{A}, \mathbf{v}, q)$ be an instance of Max-DRQ. The RandomRound algorithm returns a solution with approximation guarantee $q n^{1 / 2}$

Theorem Let OPT be the optimum to the Max-DRQ problem. There exists a problem instance such that $\lambda_{1}(\mathbf{A}) \geq$ OPT $\cdot \Omega\left(n^{1 / 2}\right)$.
Corollary The integrality gap of RandomRound algorithm is $\Omega\left(n^{1 / 2}\right)$ and it is tight up to a factor of q.

Pseudocode: SCG framework

```
Algorithm 1:SCG(A,k) Spectral Conflicting Group detection
Input :A is the adjacency matrix of the signed network; }k\mathrm{ is the number of group.
Output:Groups }\mp@subsup{S}{1}{},\ldots,\mp@subsup{S}{k}{
A(0)}\leftarrowA
fort=1,\ldots,k-1 do
    M
    if t<k-1 then
        St(t){i\not\in\mp@subsup{\cup}{j=1}{t-1}\mp@subsup{S}{j}{\prime}:{\mp@subsup{\mathbf{r}}{i}{(t)}|=(k-t)}
        A
        A}\mp@subsup{A}{i,:}{(t)}\leftarrow\mp@subsup{\mathbf{0}}{1\timesn}{}\mathrm{ and }\mp@subsup{A}{:,i}{(t)}\leftarrow\mp@subsup{\mathbf{0}}{n\times1}{}\mathrm{ for all i}\in\mp@subsup{S}{t}{\prime};\quad // Remove edges E(St,V
    else }\mp@subsup{S}{k-1}{}\leftarrow{i\not\in\mp@subsup{\cup}{j=1}{t-1}\mp@subsup{S}{j}{\prime}:\mp@subsup{\mathbf{r}}{i}{(t)}=1}\mathrm{ and }\mp@subsup{S}{k}{}\leftarrow{i\not\in\mp@subsup{\cup}{j=1}{t-1}\mp@subsup{S}{j}{\prime}:\mp@subsup{\mathbf{r}}{i}{(t)}=-1}
end
return }\mp@subsup{S}{1}{},\ldots,\mp@subsup{S}{k}{}
```

Experiments
The proposed SCG algorithm finds high-quality conflicting groups in both real-world networks and networks generated by the modified signed stochastic block model (m-SSBM). The signed-network clustering method SPONGE [5] performs pretty well in m-SSB The signed-network clustering method SP ONGE [5$]$ performs prety well in m-SSB.

Table: Real-world networks. Polarity objective (Equation (1)) achieved by the proposed method (SCG) and baselines. Dashes (-) indicate that a method exceeds the memory limit

	Bitcoin	WikiVote	Referendum	Slashdot	WikiConflict	Epinions	Wikipolitics	
\|V		5881	7115	10884	82140	116717	131580	138587
\|E		21492	100693	251406	500481	2026646	711210	715883
$\mid E_{-\|/\|E\|}$	0.2	0.2	0.1	0.2	0.6	0.2	0.1	
SCG-MA	14.6	45.5	84.9	37.8	102.6	88.8	57.5	
SCG-R	5.0	9.7	39.8	7.3	16.2	39.4	5.5	
KOCG [4]	4.4	5.5	8.8	2.6	4.5	8.7	4.8	
SPONGE-k [5]	5.0	15.8	41.5	-	-	-		
SPONGE-(k+1) [5]	0.8	1.0	1.0	-	-	-		

Figure: Results on modified signed stochastic block model (m-SSBM). We show F_{1}-score and Polarity as a function of a noise parameter η.

References
${ }^{\text {[1] }}$ N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine learning, 2004
al A. Bhaskara, N. Charikar, R. Manokaran, and A. Vijayaraghavan. On quadratic programming with a ratio objective. In Proc. of ICALP. Springer, 2012
F. Bonchi, E. Galimberti, A. Gionis, B. Ordozgoiti, and G. Ruffo. Discovering polarized communities in signed networks. In Proc. of CIKM, 2019.
L. Chu, Z. Wang, J. Pei, J. Wang, Z. Zhao, and E. Chen. Finding gangs in war from signed networks. In Proc. of KDD, 2016.
M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi. Sponge: A generalized eigenproblem for clustering signed networks. In Proc. of AISTATS, 2019

