# Discovering conficting groups in signed networks



## Ruo-Chun Tzeng<sup>1</sup> <sup>1</sup>KTH Royal Institute of Technology, Sweden

### Detecting conflicting groups

Given a signed network, our goal is to detect *k* conflicting groups, which are *k* disjoint node subsets that are mostly positively (+) linked internally and mostly negatively (-)linked to the other k-1 groups.



Challenge: There may exist **neutral** nodes whose interactions are **inconsistent** with the structure of the conflicting groups. Therefore, methods that partition the entire network, such as correlation clustering [1] and signed clustering [5] are inefficient.

By extending the formulation of the 2-polarized-clustering problem (2PC) [3], given an integer k as input, the k conflicting groups can be detected by

$$\max_{S_1,...,S_k} \frac{\sum_{h \in [k]} (|E_+(S_h)| - |E_-(S_h)|) + \frac{1}{k-1} \sum_{h \neq l \in [k]} (|E_-(S_h, S_\ell)| - |E_+(S_h, S_\ell)|)}{|\cup_{h \in [k]} S_h|}, \quad (1)$$

where  $E(S_h, S_\ell) = \{(i, j) \in E : i \in S_h, j \in S_\ell\}$  and  $E(S_h) = E(S_h, S_h)$ .

#### Our approach: Spectral Conflicting Groups

We introduce a group indicator matrix  $\mathbf{X} \in \{0, 1\}^{n \times k}$ , where  $\mathbf{X}_{i,:} = (\mathbf{I}_k)_{i,:}$  if node  $i \in S_i$ . Using the Laplacian  $\mathbf{L}_k = k \mathbf{I} - \mathbf{1}_{k \times k}$  and exploiting its spectral properties, the objective in Equation (1) is equivalent to

$$\max_{\mathbf{Y}\in\mathbb{R}^{n\times(k-1)}\setminus\{\mathbf{0}\}} \frac{\operatorname{Tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{Y})}{\operatorname{Tr}(\mathbf{Y}^{T}\mathbf{Y})} \quad \text{subject to} \quad \mathbf{Y}_{i,j} = \begin{cases} c_{j}(k-j), & \text{if } i \in S_{j} \\ 0, & \text{if } i \in \bigcup_{h=1}^{j-1}S_{h} \text{ or } i \notin \bigcup_{h\in[k]}S_{h} \\ -c_{j}, & \text{if } i \in \bigcup_{h=j+1}^{k}S_{h} \end{cases}$$

Main Idea: Assuming that  $S_1, \ldots, S_{i-1}$  have been determined, we find  $S_i$  by solving an instance of the Max-DRQ problem:

$$\mathbf{x}^* = \operatorname*{argmax}_{\mathbf{x} \in \{k-j,0,-1\}^n} \frac{\mathbf{x}^T \mathbf{A}^{(j-1)} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}.$$
 (2)

Let  $\mathbf{A}^{(j-1)}$  be the adjacency matrix after removing  $\bigcup_{h \in [j-1]} S_h$  from G, with  $\mathbf{A}^{(0)} = \mathbf{A}$ . By solving Equation (2) we find  $S_j = \{i : x_i^* = k - j\}$ .

We repeat the process to find the remaining conflicting groups  $S_{i+1}, \ldots, S_k$ .





Bruno Ordozgoiti<sup>2</sup> Aristides Gionis<sup>1,2</sup> <sup>2</sup>Aalto University, Finland

#### Solve-Max-DRQ

The Max-DRQ problem is APX-Hard [2]. The problem has been studied only for k = 2. There exist an SDP-based  $\tilde{\mathcal{O}}(n^{1/3})$ -approximation algorithm [2] and a more practical  $\mathcal{O}(n^{1/2})$ -approximation algorithm [3]. For k > 2, no algorithm for Max-DRQ is known.

Our approach is based on rounding the leading eigenvector  $\mathbf{v}$  of  $\mathbf{A}^{(j)}$  to a vector in  $\mathbf{r} \in \{k - j, 0, -1\}^n$ . We use the following rounding schemes:

MinimumAngle (MA) Set  $\mathbf{r} = \operatorname{argmin}_{\mathbf{u} \in \{k-j,0,-1\}^n} \sin \theta(\mathbf{v}, \mathbf{u})$ .

- ► The minimizer can be found in time  $\mathcal{O}(n^2)$ .
- For practical considerations in the experiments we use a  $\mathcal{O}(n)$  heuristic method.

RandomRound (R) Each entry of  $\mathbf{r}$  is rounded by

 $\mathbf{r}_{i} = \begin{cases} (k-j), & \text{with prob. } |\mathbf{v}_{i}|/(k-j) \text{ if } v_{i} > 0\\ -1, & \text{with prob. } |\mathbf{v}_{i}| \text{ if } v_{i} < 0 \end{cases}.$ 

This randomized algorithm gives an  $(k - j)n^{1/2}$ -approximation algorithm to the Max-DRQ problem, which generalizes the previous result for the 2PC problem [3].

- Theorem Let  $(\mathbf{A}, \mathbf{v}, q)$  be an instance of Max-DRQ. The RandomRound algorithm returns a solution with approximation guarantee  $qn^{1/2}$ .
- Theorem Let OPT be the optimum to the Max-DRQ problem. There exists a problem instance such that  $\lambda_1(\mathbf{A}) \geq \text{OPT} \cdot \Omega(n^{1/2})$ .
- Corollary The integrality gap of RandomRound algorithm is  $\Omega(n^{1/2})$  and it is tight up to a factor of **q**.

#### **Pseudocode: SCG framework**

| Algorithm 1: SCG $(A, k)$                                                                                                  | Spectral Conflicting Group detection                            |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <b>Input</b> : A is the adjacency matrix of the signed networ                                                              | k; k is the number of groups.                                   |
| <b>Output</b> : Groups $S_1, \ldots, S_k$ .                                                                                |                                                                 |
| $A^{(0)} \leftarrow A;$                                                                                                    |                                                                 |
| for $t = 1,, k - 1$ do                                                                                                     |                                                                 |
| $\mathbf{r}^{(t)} \leftarrow Solve-Max-DRQ\left(A^{(t-1)}, k-t\right);$                                                    |                                                                 |
| if $t < k - 1$ then                                                                                                        |                                                                 |
| $  S_t \leftarrow \{ i \notin \bigcup_{i=1}^{t-1} S_i :  \mathbf{r}_i^{(t)}  = (k-t) \};$                                  |                                                                 |
| $A^{(t)} \leftarrow A^{(t-1)};$                                                                                            |                                                                 |
| $A_{i,:}^{(t)} \leftarrow 0_{1 \times n} \text{ and } A_{:,i}^{(t)} \leftarrow 0_{n \times 1} \text{ for all } i \in S_t;$ | // Remove edges $E(S_t,V)$                                      |
| else $S_{k-1} \leftarrow \{i \notin \bigcup_{j=1}^{t-1} S_j : \mathbf{r}_i^{(t)} = 1\}$ and $S_k \leftarrow \{$            | $i \notin \bigcup_{j=1}^{t-1} S_j : \mathbf{r}_i^{(t)} = -1\};$ |
| end                                                                                                                        |                                                                 |
| return $S_1, \ldots, S_k$ ;                                                                                                |                                                                 |



The proposed SCG algorithm finds high-quality conflicting groups in both real-world networks and networks generated by the modified signed stochastic block model (m-SSBM). The signed-network clustering method SPONGE [5] performs pretty well in m-SSBM networks but fails in real-world networks. KOCG [4] finds groups of very small size.

|                              | Bitcoin | WikiVote | Referendum | Slashdot | WikiConflict | Epinions | Wikipolitics |
|------------------------------|---------|----------|------------|----------|--------------|----------|--------------|
| V                            | 5881    | 7 1 1 5  | 10884      | 82 140   | 116717       | 131 580  | 138 587      |
| <i>E</i>                     | 21492   | 100693   | 251406     | 500481   | 2026646      | 711210   | 715883       |
| $ E_{-} / E $                | 0.2     | 0.2      | 0.1        | 0.2      | 0.6          | 0.2      | 0.1          |
| SCG-MA                       | 14.6    | 45.5     | 84.9       | 37.8     | 102.6        | 88.8     | 57.5         |
| SCG-R                        | 5.0     | 9.7      | 39.8       | 7.3      | 16.2         | 39.4     | 5.5          |
| KOCG [4]                     | 4.4     | 5.5      | 8.8        | 2.6      | 4.5          | 8.7      | 4.8          |
| SPONGE- $k$ [5]              | 5.0     | 15.8     | 41.5       |          |              |          |              |
| SPONGE- $(\mathbf{k}+1)$ [5] | 0.8     | 1.0      | 1.0        |          |              |          |              |

|       | 1.0- |
|-------|------|
|       | 0.8- |
| core  | 0.6- |
| F1-S( | 0.4- |
|       | 0.2- |
|       | 0.0- |

Figure: Results on modified signed stochastic block model (m-SSBM). We show  $F_1$ -score and Polarity as a function of a noise parameter  $\eta$ .

#### References





#### Experiments

**Table**: Real-world networks. Polarity objective (Equation (1)) achieved by the proposed method (SCG) and baselines. Dashes (-) indicate that a method exceeds the memory limit.



[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. *Machine learning*, 2004.

[2] A. Bhaskara, N. Charikar, R. Manokaran, and A. Vijayaraghavan. On quadratic programming with a ratio objective. In *Proc. of ICALP*. Springer, 2012.

[3] F. Bonchi, E. Galimberti, A. Gionis, B. Ordozgoiti, and G. Ruffo. Discovering polarized communities in signed networks. In Proc. of CIKM, 2019.

[4] L. Chu, Z. Wang, J. Pei, J. Wang, Z. Zhao, and E. Chen. Finding gangs in war from signed networks. In Proc. of KDD, 2016.

<sup>[5]</sup> M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi. Sponge: A generalized eigenproblem for clustering signed networks. In *Proc. of AISTATS*, 2019.



