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Detecting conflicting groups
Given a signed network, our goal is to detect k conflicting groups, which are k disjoint
node subsets that are mostly positively (+) linked internally and mostly negatively (−)
linked to the other k − 1 groups.

: negative edge: positive edge

Challenge: There may exist neutral nodes whose interactions are inconsistent with the
structure of the conflicting groups. Therefore, methods that partition the entire
network, such as correlation clustering [1] and signed clustering [5] are inefficient.

By extending the formulation of the 2-polarized-clustering problem (2PC) [3], given an
integer k as input, the k conflicting groups can be detected by

max
S1,...,Sk

∑
h∈[k](|E+(Sh)| − |E−(Sh)|) + 1

k−1
∑

h 6=l∈[k](|E−(Sh, S`)| − |E+(Sh, S`)|)
| ∪h∈[k] Sh|

, (1)

where E (Sh, S`) = {(i , j) ∈ E : i ∈ Sh, j ∈ S`} and E (Sh) = E (Sh, Sh).

Our approach: Spectral Conflicting Groups
We introduce a group indicator matrix X ∈ {0, 1}n×k , where Xi ,: = (Ik)j ,: if node i ∈ Sj .
Using the Laplacian Lk = kI− 1k×k and exploiting its spectral properties, the objective in
Equation (1) is equivalent to

max
Y∈Rn×(k−1)\{0}

Tr(YT AY)
Tr(YT Y) subject to Yi ,j =





cj(k − j), if i ∈ Sj

0, if i ∈ ∪j−1
h=1Sh or i /∈ ∪h∈[k]Sh

−cj , if i ∈ ∪k
h=j+1Sh

.

Main Idea: Assuming that S1, . . . , Sj−1 have been determined, we find Sj by solving an
instance of the Max-DRQ problem:

x∗ = argmax
x∈{k−j ,0,−1}n

xT A(j−1)x
xT x . (2)

Let A(j−1) be the adjacency matrix after removing ∪h∈[j−1]Sh from G , with A(0) = A.
By solving Equation (2) we find Sj = {i : x∗i = k − j}.
We repeat the process to find the remaining conflicting groups Sj+1, . . . , Sk .

Solve-Max-DRQ
The Max-DRQ problem is APX-Hard [2]. The problem has been studied only for k = 2.
There exist an SDP-based Õ(n1/3)-approximation algorithm [2] and a more practical
O(n1/2)-approximation algorithm [3]. For k > 2, no algorithm for Max-DRQ is known.

Our approach is based on rounding the leading eigenvector v of A(j) to a vector in
r ∈ {k − j , 0,−1}n. We use the following rounding schemes:

MinimumAngle (MA) Set r = argminu∈{k−j ,0,−1}n sin θ(v,u).
I The minimizer can be found in time O(n2).
I For practical considerations in the experiments we use a O(n) heuristic method.

RandomRound (R) Each entry of r is rounded by

ri =
{

(k − j), with prob. |vi |/(k − j) if vi > 0
−1, with prob. |vi | if vi < 0

.

This randomized algorithm gives an (k − j)n1/2-approximation algorithm to the
Max-DRQ problem, which generalizes the previous result for the 2PC problem [3].

Theorem Let (A, v, q) be an instance of Max-DRQ. The RandomRound algorithm
returns a solution with approximation guarantee qn1/2.

Theorem Let OPT be the optimum to the Max-DRQ problem. There exists a
problem instance such that λ1(A) ≥ OPT · Ω(n1/2).

Corollary The integrality gap of RandomRound algorithm is Ω(n1/2) and it is tight
up to a factor of q.

Pseudocode: SCG framework

Algorithm 1: SCG (A, k) Spectral Conflicting Group detection

Input :A is the adjacency matrix of the signed network; k is the number of groups.
Output :Groups S1, . . . , Sk.
A(0)  A;
for t = 1, . . . , k � 1 do

r(t)  Solve-Max-DRQ (A(t�1), k � t) ;
if t < k � 1 then

St  {i /2 [t�1
j=1Sj : |r(t)

i | = (k � t)};
A(t)  A(t�1);
A

(t)
i,:  01⇥n and A

(t)
:,i  0n⇥1 for all i 2 St ; // Remove edges E(St, V )

else Sk�1  {i /2 [t�1
j=1Sj : r

(t)
i = 1} and Sk  {i /2 [t�1

j=1Sj : r
(t)
i = �1} ;

end
return S1, . . . , Sk;

Notice that Yi,j = 0 for all i 2 [j�2
h=1Sh and Yi,j = �cj�1 for all i 2 [k

h=jSh. We let A(0) = A,
and we define A(t) to be the adjacency matrix that results after removing from A(t�1) all entries that
correspond to edges incident to nodes in St. Then, the objective function (6) is equivalent to

tr((Y:,2:)
T A(Y:,2:))

tr((Y:,2:)T (Y:,2:))
=

k�1X

t=1

wt
(Y:,t+1)

T A(Y:,t+1)

(Y:,t+1)T (Y:,t+1)
=

k�1X

t=1

wt
(Y:,t+1)

T A(t�1)(Y:,t+1)

(Y:,t+1)T (Y:,t+1)
, (7)

where wt = (Y:,t+1)
T (Y:,t+1)/tr((Y:,2:)

T (Y:,2:)) 2 [0, 1] and
Pk�1

t=1 wt = 1. In other words,
Equation (7) shows that the objective function (6) is a convex combination of k� 1 discrete Rayleigh
quotients. Moreover, Equation (7) also suggests that the solution Y:,t+1 characterizes the group
St that conflicts the most with the (not yet decided) rest of groups Sh for h > t. Based on this
observation, we propose a scheme SCG (spectral conflicting groups), shown as Algorithm 1.

SCG executes k�1 iterations. At the t-th iteration, for each t 2 [k�1], we find the vector Y:,t+1 that
maximizes the discrete Rayleigh quotient of A(t�1), while satisfying the constraints set on matrix Y .
We refer to this problem as MAX-DRQ:

r(t) = argmax
x2{0,�1,k�t}n\{0}

xT A(t�1)x

xT x
. (8)

The vector Y:,t+1 is then given by Y:,t+1 = ct r
(t). We note that our scheme works with any method

that solves the MAX-DRQ problem. In Algorithm 1 (SCG) we refer to such a general method as
Solve-Max-DRQ. Strategies to solve MAX-DRQ are presented in Section 6. Once the MAX-DRQ
problem is solved in the t-th iteration, the vector r(t) is obtained. If t < k � 1, the t-th group is
recovered by St = {i /2 [t�1

j=1Sj : |r(t)
i | = (k�t)}, and if t = k�1 (last iteration), the last two groups

are recovered by Sk�1 = {i /2 [t�1
j=1Sj : r

(t)
i = 1} and Sk = {i /2 [t�1

j=1Sj : r
(t)
i = �1}.

Note that Equation (7) justifies why it is not a good idea to use the k � 1 principal vectors of A to
identify the conflicting groups: the reason is that the coefficients [wt] are not fixed values.

6 Solving the maximum discrete Rayleigh quotient problem

In this section we present two solutions for MAX-DRQ. Our first solution is a deterministic algorithm
presented in Section 6.1. The second solution is a randomized algorithm presented in Section 6.2.
Both solutions first compute the leading eigenvector v1 of the input matrix A(t�1), and then round
v1 to the appropriate discrete form. The difference is the rounding method. We refer to this generic
algorithm as Solve-Max-DRQ, and it is the procedure used in the iterative step of SCG. Pseudocode
for Solve-Max-DRQ is given as Algorithm 2.

5

Experiments
The proposed SCG algorithm finds high-quality conflicting groups in both real-world
networks and networks generated by the modified signed stochastic block model (m-SSBM).
The signed-network clustering method SPONGE [5] performs pretty well in m-SSBM
networks but fails in real-world networks. KOCG [4] finds groups of very small size.

Table: Real-world networks. Polarity objective (Equation (1)) achieved by the proposed
method (SCG) and baselines. Dashes (−) indicate that a method exceeds the memory limit.

Bitcoin WikiVote Referendum Slashdot WikiConflict Epinions Wikipolitics
|V | 5 881 7 115 10 884 82 140 116 717 131 580 138 587
|E | 21 492 100 693 251 406 500 481 2 026 646 711 210 715 883
|E−|/|E | 0.2 0.2 0.1 0.2 0.6 0.2 0.1
SCG-MA 14.6 45.5 84.9 37.8 102.6 88.8 57.5
SCG-R 5.0 9.7 39.8 7.3 16.2 39.4 5.5
KOCG [4] 4.4 5.5 8.8 2.6 4.5 8.7 4.8
SPONGE-k [5] 5.0 15.8 41.5 — — — —
SPONGE-(k+1) [5] 0.8 1.0 1.0 — — — —
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Figure: Results on modified signed stochastic block model (m-SSBM). We show F1-score and
Polarity as a function of a noise parameter η.
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