Improved analysis of randomized SVD for top-eigenvector approximation
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Top-eigenvector approximation

Our techniques: reduction to projection length

Extension: exploiting prior knowledge of large (uy, 1)?

Given 7 C R™ {0} and a symmetric matrix A € R"*" find Our core technique is a reduction from Remind that Y.; = A9S.; = >°7 . \9(u s )u; for any j € [d].
x " Ax Z/E[n] 042‘7*1(57“” a)’ by For large (uq, 1> it is possﬂole to make Y. ; align to u; faster by
argmax —-—. R(U) = max with a; = —, Vi € [n], sampling entries of § i.id. from non-centered distributions.
T X'X acSd-1 Z/E[n] & 1(STu;, a)? A

A computational efficient way to solve these problem is

, y Algorithm: RandSum(A, g, d, p)
1 Find the top-eigenvector u; of A for any A = 0, to cos” (eq, S) which is well-known to be ©(T) w.h.p.:

1 S; ~ N(O, 1)”x[%1, Sy ~ Bernoulli(p)”xL%J;
(Lemma by [2]) Let S ~ N(0,1)"™¢ with d < n. Then, 2 S+ [S1 S

2 Round w; into a vector in T (if needed)
However, what we practically obtain is the approximated

t RSVD(A,S,q.d);
top-eigenvector i of A by numerical solvers, not uj. W £ 0. cos? Y(v.S) = © (ﬂ) — o 3 return (A.S,q.d)
Characterizing the gap between u; and 0 § Positive semidefinite matrices: |
. . . where 6(v, X) = cos™! (max (v,X) ) (Theorem 5) For A »= 0, t =RandSum(A,q,d,p) satisfies
Let (Aj, u;) be the i-th largest eigenpair of A, A; > 0 and define ) xerange(X) Tv[[,[[x[l2 ) {d " L
A max U1 —
R(G) = A7 1UTAU o Our technique generalizes to indefinite A under a mild assumption. R(4) = (Q ( )) w.p. 1 —e (d),
a'a : : Indefinite matrices:
- . . d ] f RSVD naeimite ma
We consider O(nd)-space and O(q)-pass algorithms with d, q € N. Ou mproe aa v 55 Under one additional assumption, the guarantee of RSVD and
Prior analysis of R(1) are all additive bounds. For these additive Positive semidefinite mAatrlces PR Rand5um for p.s.d. matrices generalize to indefinite matrices.
bounds to be meaningulf, [4] showed that ¢ = ((In n) is required. (Theorem 1) VA = 0, R(0) = (2 (2))*7 w.p. 1 — e 1),
A . : . - R % B
gg?f)e_[(ﬁ_,?}i;%vrg b/;([lé ,?orl a;1y0.0(‘ln>n{)?) chieved by Handomized (Theorem 2) IA = 0 s.t. k(4) = O ((%) ’ 1) wp. 1 —e 1, 1] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding
: : (Theorem 3) For A %= 0 with (107 v)-power-law decay, iy € [n] and structure with randomness: Probabilistic algorithms for constructing
Q: Is g = Q(In n) necessary or an artifact of analysis? L~ 1/2q. R(8) = Q (( 4 ) 2q+1> wop. 1 e ) approximate matrix decompositions. STAM review, 2011.
A We provide the first non-trivial guarantee of R(u) in the regime of | e N | 2] Moritz Hardt and Eric Price. The noisy power method: a meta

g = o(In n) by analyzing of Randomized SVD [1]: Indefinite matrices: 20 2941
Assume Fr € (0,1] s.t. ST a7 > w37 o[t

(Theorem 4) For A with (i, fy) -power-law decay, iy € [n] and

algorithm with applications. In Proc. of NeurlPS, 2014.

Algorithm: RSVD(A, g, d) 3] Cameron Musco and Christopher Musco. Randomized block krylov

1 Y < A9IS where S ~ N(0,1)"%9. methods for stronger and faster approximate singular value

> Y = QR: .1 Y >1/2q, d6; > 0st. N decomposition. In Proc. of NeurlPS, 2015.

3 B+ Q'TAQ; R(G) =Q | c. ( d _ >2q+1 with prob. > 1 — o~ UVdr?) 4] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight

4 0= Quq(B); d + Io query complexity lower bounds for pca via finite sample deformed
5 return Q; wigner law. In Proc. of STOC, 2018.
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