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Top-eigenvector approximation
Given T ⊆ Rn\{0} and a symmetric matrix A ∈ Rn×n, find

argmax
x∈T

xTAx
xTx .

A computational efficient way to solve these problem is
1 Find the top-eigenvector u1 of A
2 Round u1 into a vector in T (if needed)
However, what we practically obtain is the approximated
top-eigenvector û of A by numerical solvers, not u1.

Characterizing the gap between u1 and û
Let (λi , ui) be the i -th largest eigenpair of A, λ1 > 0 and define

R(û) = λ−1
1

ûTAû
ûT û . (1)

We consider O(nd)-space and O(q)-pass algorithms with d , q ∈ N.
Prior analysis of R(û) are all additive bounds. For these additive
bounds to be meaningulf, [4] showed that q = Ω(ln n) is required.
State-of-the-art: R(û) ≥ 1−O(ln n/q) achieved by Randomized
SVD [1], shown by [3], for any A < 0.
Q: Is q = Ω(ln n) necessary or an artifact of analysis?
A: We provide the first non-trivial guarantee of R(û) in the regime of
q = o(ln n) by analyzing of Randomized SVD [1]:

Our techniques: reduction to projection length
Our core technique is a reduction from

R(û) = max
a∈Sd−1

∑
i∈[n]α

2q+1
i 〈STui , a〉2∑

i∈[n]α
2q
i 〈STui , a〉2

with αi = λi
λ1
,∀i ∈ [n],

for any A < 0, to cos2 θ(e1,S) which is well-known to be Θ(d
n) w.h.p.:

(Lemma by [2]) Let S ∼ N (0, 1)n×d with d � n. Then,

∀v 6= 0, cos2 θ(v,S) = Θ
(

d
n

)
w.p. 1− e−Ω(d),

where θ(v,X) = cos−1
(

maxx∈range(X)
〈v,x〉
‖v‖2‖x‖2

)
.

Our technique generalizes to indefinite A under a mild assumption.

Our improved analysis of RSVD
Positive semidefinite matrices:

(Theorem 1) ∀A < 0, R(û) =
(

Ω
(d

n
)) 1

2q+1 w.p. 1− e−Ω(d).
(Theorem 2) ∃A < 0 s.t. R(û) = O

((d
n
) 1

2q+1
)
w.p. 1− e−Ω(d).

(Theorem 3) For A < 0 with (i0, γ)-power-law decay, i0 ∈ [n] and
γ > 1/2q, R(û) = Ω

((
d

d+i0

) 1
2q+1
)

w.p. 1− e−Ω(d).

Indefinite matrices:
Assume ∃κ ∈ (0, 1] s.t.

∑n
i=2α

2q+1
i ≥ κ

∑n
i=2 |αi|2q+1.

(Theorem 4) For A with (i0, γ)-power-law decay, i0 ∈ [n] and
γ > 1/2q, ∃cκ > 0 s.t.

R(û) = Ω
(

cκ
(

d
d + i0

) 1
2q+1
)

with prob. ≥ 1− e−Ω(
√

dκ2).

Extension: exploiting prior knowledge of large 〈u1, 1〉2

Remind that Y:,j = AqS:,j =
∑n

i=1 λ
q
i (uT

i S:,j)ui for any j ∈ [d ].
For large 〈u1, 1〉2, it is possible to make Y:,j align to u1 faster by
sampling entries of S i.i.d. from non-centered distributions.

Positive semidefinite matrices:
(Theorem 5) For A < 0, û =RandSum(A,q,d ,p) satisfies

R(û) =
(

Ω
(

max{d ,〈u1,1n〉2}
n

)) 1
2q+1

w.p. 1− e−Ω(d).

Indefinite matrices:
Under one additional assumption, the guarantee of RSVD and
RandSum for p.s.d. matrices generalize to indefinite matrices.
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