Improved analysis of randomized SVD for top-eigenvector approximation

Ruo-Chun Tzeng¹ Po-An Wang² Florian Adriaens¹

¹Division of Theoretical Computer Science ²Division of Decision and Control Systems KTH Royal Institute of Technology, Sweden

Top-eigenvector approximation

Given $\mathcal{T} \subseteq \mathbb{R}^n \setminus \{\mathbf{0}\}$ and a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\operatorname{argmax}_{\mathbf{x}\in\mathcal{T}} \frac{\mathbf{x}^{\mathcal{T}}\mathbf{A}\mathbf{x}}{\mathbf{x}^{\mathcal{T}}\mathbf{x}}.$$

A computational efficient way to solve these problem is

1 Find the top-eigenvector \mathbf{u}_1 of \mathbf{A}

2 Round u_1 into a vector in \mathcal{T} (if needed)

However, what we practically obtain is the approximated top-eigenvector $\hat{\mathbf{u}}$ of \mathbf{A} by numerical solvers, not \mathbf{u}_1 .

Characterizing the gap between \mathbf{u}_1 and $\hat{\mathbf{u}}_1$

Let $(\lambda_i, \mathbf{u}_i)$ be the *i*-th largest eigenpair of $\mathbf{A}, \lambda_1 > \mathbf{0}$ and

$$R(\hat{\mathbf{u}}) = \lambda_1^{-1} \frac{\hat{\mathbf{u}}^T \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}.$$

We consider $\mathcal{O}(nd)$ -space and $\mathcal{O}(q)$ -pass algorithms with Prior analysis of $R(\hat{\mathbf{u}})$ are all additive bounds. For these bounds to be meaningulf, [4] showed that $q = \Omega(\ln n)$ is State-of-the-art: $R(\hat{\mathbf{u}}) \geq 1 - \mathcal{O}(\ln n/q)$ achieved by Rand

SVD [1], shown by [3], for any $\mathbf{A} \succeq \mathbf{0}$.

Q: Is $q = \Omega(\ln n)$ necessary or an artifact of

A: We provide the first non-trivial guarantee of $R(\hat{\mathbf{u}})$ in $q = o(\ln n)$ by analyzing of Randomized SVD [1]:

Algorithm: $RSVD(\mathbf{A}, q, d)$

- $\mathbf{Y} \leftarrow \mathbf{A}^q \mathbf{S}$ where $\mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d}$;
- 2 $\mathbf{Y} = \mathbf{Q}\mathbf{R};$
- 3 $\mathbf{B} \leftarrow \mathbf{Q}^T \mathbf{A} \mathbf{Q};$
- 4 $\hat{\mathbf{u}} = \mathbf{Q} \mathbf{u}_1(\mathbf{B});$
- 5 return û;

³Institute of Information Science Academia Sinica, Taiwan

	Our techniques: reduction to proje
find	Our core technique is a reduction from $R(\hat{\mathbf{u}}) = \max_{\mathbf{a} \in \mathbb{S}^{d-1}} \frac{\sum_{i \in [n]} \alpha_i^{2q+1} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2}{\sum_{i \in [n]} \alpha_i^{2q} \langle \mathbf{S}^T \mathbf{u}_i, \mathbf{a} \rangle^2} \text{ with}$ for any $\mathbf{A} \succeq 0$, to $\cos^2 \theta(\mathbf{e}_1, \mathbf{S})$ which is well-km
d	(Lemma by [2]) Let $\mathbf{S} \sim \mathcal{N}(0, 1)^{n \times d}$ with $d \ll \forall \mathbf{v} \neq 0, \cos^2 \theta(\mathbf{v}, \mathbf{S}) = \Theta\left(\frac{d}{n}\right)$ w.p
d define	where $\theta(\mathbf{v}, \mathbf{X}) = \cos^{-1} \left(\max_{\mathbf{x} \in \text{range}(\mathbf{X})} \frac{\langle \mathbf{v}, \mathbf{x} \rangle}{\ \mathbf{v}\ _2 \ \mathbf{x}\ _2} \right)$. Our technique generalizes to indefinite A under
h $d, q \in \mathbb{N}$. e additive required. domized f analysis? the regime of	Our improved analysis of RSVD Positive semidefinite matrices: (Theorem 1) $\forall \mathbf{A} \succeq 0, R(\hat{\mathbf{u}}) = \left(\Omega\left(\frac{d}{n}\right)\right)^{\frac{1}{2q+1}}$ w (Theorem 2) $\exists \mathbf{A} \succeq 0$ s.t. $R(\hat{\mathbf{u}}) = O\left(\left(\frac{d}{n}\right)^{\frac{1}{2q+1}}$ (Theorem 3) For $\mathbf{A} \succeq 0$ with (i_0, γ) -power-late $\gamma > 1/2q, R(\hat{\mathbf{u}}) = \Omega\left(\left(\frac{d}{d+i_0}\right)^{\frac{1}{2q+1}}\right)$ w.p. $1 - \frac{1}{2q+1}$ Indefinite matrices: Assume $\exists \kappa \in (0, 1]$ s.t. $\sum_{i=2}^{n} \alpha_i^{2q+1} \ge \kappa \sum_{i=2}^{n} $ (Theorem 4) For \mathbf{A} with (i_0, γ) -power-law d $\gamma > 1/2q, \exists c_{\kappa} > 0$ s.t. $R(\hat{\mathbf{u}}) = \Omega\left(c_{\kappa}\left(\frac{d}{d+i_0}\right)^{\frac{1}{2q+1}}\right)$ with pro-

Social Mining & Big Data Ecosystem

Sobig Data Research infrastructure

Aristides Gionis¹

Chi-Jen Lu³

jection length

th
$$\alpha_i = \frac{\lambda_i}{\lambda_1}, \forall i \in [n],$$

nown to be
$$\Theta(\frac{d}{n})$$
 w.h.p.:

- **<** *n*. Then,
- y.p. $1 e^{-\Omega(d)}$.

er a mild assumption.

w.p.
$$1 - e^{-\Omega(d)}$$
.
 $\left[\frac{1}{+1}\right]$ w.p. $1 - e^{-\Omega(d)}$.
law decay, $i_0 \in [n]$ and
 $-e^{-\Omega(d)}$.

$$|\alpha_i|^{2q+1}$$
.
decay, $i_0 \in [n]$ and

ob.
$$\geq 1 - e^{-\Omega(\sqrt{d}\kappa^2)}$$
.

Remind that $\mathbf{Y}_{:,j} = \mathbf{A}^q \mathbf{S}_{:,j} = \sum_{i=1}^n \lambda_i^q (\mathbf{u}_i^T \mathbf{S}_{:,j}) \mathbf{u}_i$ for any $j \in [d]$. For large $\langle \mathbf{u}_1, \mathbf{1} \rangle^2$, it is possible to make $\mathbf{Y}_{:,i}$ align to \mathbf{u}_1 faster by sampling entries of **S** i.i.d. from non-centered distributions.

Algorithm: RandSum(**A**, q, d, p)

1
$$\mathbf{S}_1 \sim \mathcal{N}(0,1)^{n imes \lceil rac{d}{2} \rceil}$$

2
$$\mathbf{S} \leftarrow [\mathbf{S}_1 \quad \mathbf{S}_2]$$

Positive semidefinite matrices:

(Theorem 5) For
$$\mathbf{A} \succeq 0$$
, $\hat{\mathbf{u}} = \mathbf{F}$
 $R(\hat{\mathbf{u}}) = \left(\Omega\left(\frac{\max\{d, \langle \mathbf{u}_1, \mathbf{1}_n \rangle^2\}}{n}\right)\right)$

Indefinite matrices: Under one additional assumption, the guarantee of RSVD and RandSum for p.s.d. matrices generalize to indefinite matrices.

References

- approximate matrix decompositions. *SIAM review*, 2011.
- [2] Moritz Hardt and Eric Price. The noisy power method: a meta algorithm with applications. In *Proc. of NeurIPS*, 2014.
- methods for stronger and faster approximate singular value decomposition. In *Proc. of NeurIPS*, 2015.
- [4] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight wigner law. In *Proc. of STOC*, 2018.

Extension: exploiting prior knowledge of large $\langle u_1, \mathbf{1} \rangle^2$

, $\mathbf{S}_2 \sim \text{Bernoulli}(p)^{n \times \lfloor \frac{d}{2} \rfloor};$

5,q,d);

RandSum $(\mathbf{A}, \mathbf{q}, \mathbf{d}, \mathbf{p})$ satisfies 2q+1w.p. $1 - e^{-\Omega(d)}$

[1] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Probabilistic algorithms for constructing

[3] Cameron Musco and Christopher Musco. Randomized block krylov

query complexity lower bounds for pca via finite sample deformed

