Improved analysis of randomized SVD for top-eigenvector approximation
Ruo-Chun Tzeng ${ }^{1}$ Po-An Wang ${ }^{2}$ Florian Adriaens ${ }^{1}$ Aristides Gionis ${ }^{1}$
Chi-Jen Lu ${ }^{3}$

${ }^{1}$ Division of Theoretical Computer Science ${ }^{2}$ Division of Decision and Control Systems KTH Royal Institute of Technology, Sweden
${ }^{3}$ Institute of Information Science Academia Sinica, Taiwan

Top-eigenvector approximation
Given $\mathcal{T} \subseteq \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, find

$$
\underset{\mathbf{x} \in \mathcal{T}}{\operatorname{argmax}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

A computational efficient way to solve these problem is
1 Find the top-eigenvector \mathbf{u}_{1} of \mathbf{A}
2 Round u_{1} into a vector in \mathcal{T} (if needed)
However, what we practically obtain is the approximated top-eigenvector $\hat{\mathbf{u}}$ of \mathbf{A} by numerical solvers, not \mathbf{u}_{1}.
Characterizing the gap between \mathbf{u}_{1} and $\hat{\mathbf{u}}$ Let $\left(\lambda_{i}, \mathbf{u}_{i}\right)$ be the i-th largest eigenpair of $\mathbf{A}, \lambda_{1}>0$ and define

$$
R(\hat{\mathbf{u}})=\lambda_{1}^{-1} \frac{\hat{\mathbf{u}}^{T} \mathbf{A} \hat{\mathbf{u}}}{\hat{\mathbf{u}}^{T} \hat{\mathbf{u}}} .
$$

We consider $\mathcal{O}(n d)$-space and $\mathcal{O}(q)$-pass algorithms with $d, q \in \mathbb{N}$.
Prior analysis of $R(\hat{\mathbf{u}})$ are all additive bounds. For these additive bounds to be meaningulf, [4] showed that $q=\Omega(\ln n)$ is required State-of-the-art: $R(\hat{\mathbf{u}}) \geq 1-\mathcal{O}(\ln n / q)$ achieved by Randomized SVD [1], shown by [3], for any $\mathbf{A} \succcurlyeq 0$.
Q: Is $q=\Omega(\ln n)$ necessary or an artifact of analysis?
A: We provide the first non-trivial guarantee of $R(\hat{\mathbf{u}})$ in the regime of $q=o(\ln n)$ by analyzing of Randomized SVD [1]:

Algorithm: $\operatorname{RSVD}(\mathbf{A}, q, d)$

$1 \overline{\mathbf{Y} \leftarrow \mathbf{A}^{q} \mathbf{S} \text { where } \mathbf{S} \sim \mathcal{N}(0,1)^{n \times d} \text {; }}$
${ }^{2} \mathbf{Y}=\mathbf{Q R}$;
з $\mathbf{B} \leftarrow \mathbf{Q}^{\top} \mathbf{A Q}$;
$4 \hat{\mathbf{u}}=\mathbf{Q} \mathbf{u}_{1}(\mathbf{B}) ;$
5 return $\hat{\text { un }}$

Our techniques: reduction to projection length Our core technique is a reduction from

$$
R(\hat{\mathbf{u}})=\max _{\mathbf{a} \in \mathbb{S}^{d}-1} \frac{\sum_{i \in[n]} \alpha_{i}^{2 q+1}\left\langle\mathbf{S}^{T} \mathbf{u}_{i}, \mathbf{a}\right\rangle^{2}}{\sum_{i \in[n]} \alpha_{i}^{2 q}\left\langle\mathbf{S}^{T} \mathbf{u}_{i}, \mathbf{a}\right\rangle^{2}} \text { with } \alpha_{i}=\frac{\lambda_{i}}{\lambda_{1}}, \forall i \in[n],
$$

for any $\mathbf{A} \succcurlyeq 0$, to $\cos ^{2} \theta\left(\mathbf{e}_{1}, \mathbf{S}\right)$ which is well-known to be $\Theta\left(\frac{d}{n}\right)$ w.h.p.:

$$
\text { (Lemma by [2]) Let } \mathbf{S} \sim \mathcal{N}(0,1)^{n \times d} \text { with } d \ll n \text {. Then, }
$$

$$
\forall \mathbf{v} \neq \mathbf{0}, \cos ^{2} \theta(\mathbf{v}, \mathbf{S})=\Theta\left(\frac{d}{n}\right) \text { w.p. } 1-e^{-\Omega(d)}
$$

where $\theta(\mathbf{v}, \mathbf{X})=\cos ^{-1}\left(\max _{\mathbf{x} \in \operatorname{range}}(\mathbf{X}) \frac{\langle\mathbf{v}, \mathbf{x}\rangle}{\|\mathbf{v}\|_{2}\|\mathbf{x}\|_{2}}\right)$
Our technique generalizes to indefinite \mathbf{A} under a mild assumption.

Our improved analysis of RSVD

Positive semidefinite matrices:

$$
\begin{aligned}
& \text { (Theorem 1) } \forall \mathbf{A} \succcurlyeq 0, R(\hat{\mathbf{u}})=\left(\Omega\left(\frac{d}{n}\right){ }^{\frac{1}{2 q+1}} \text { w.p. } 1-e^{-\Omega(d) .}\right. \\
& \text { (Theorem 2) } \exists \mathbf{A} \succcurlyeq 0 \text { s.t. } R(\hat{\mathbf{u}})=\mathcal{O}\left(\left(\frac{d}{n}\right)^{\frac{1}{2 q+1}}\right) \text { w.p. } 1-e^{-\Omega(d)} \text {. } \\
& \text { (Theorem 3) For } \mathbf{A} \succcurlyeq 0 \text { with }\left(i_{0}, \gamma\right) \text {-power-law decay, } i_{0} \in[n] \text { and } \\
& \gamma>1 / 2 q, R(\hat{\mathbf{u}})=\Omega\left(\left(\frac{d}{d+i_{0}}\right)^{\frac{1}{2 q+1}}\right) \text { w.p. } 1-e^{-\Omega(d) .}
\end{aligned}
$$

Indefinite matrices:
Assume $\exists \kappa \in(0,1]$ s.t. $\sum_{i=2}^{n} \alpha_{i}^{2 q+1} \geq \kappa \sum_{i=2}^{n}\left|\alpha_{i}\right|^{2 q+1}$
(Theorem 4) For \mathbf{A} with $\left(i_{0}, \gamma\right)$-power-law decay, $i_{0} \in[n]$ and
$\gamma>1 / 2 q, \exists c_{k}>0$ s.t

$$
R(\hat{\mathbf{u}})=\Omega\left(c_{\kappa}\left(\frac{d}{d+i_{0}}\right)^{\frac{1}{2 q+1}}\right) \text { with prob. } \geq 1-e^{-\Omega\left(\sqrt{d} \kappa^{2}\right)}
$$

Extension: exploiting prior knowledge of large $\left\langle\mathbf{u}_{1}, \mathbf{1}\right\rangle^{2}$
Remind that $\mathbf{Y}_{: j}=\mathbf{A}^{q} \mathbf{S}_{: j}=\sum_{i=1}^{n} \lambda_{i}^{q}\left(\mathbf{u}_{i}^{\top} \mathbf{S}_{\mathbf{i}}\right) \mathbf{u}_{i}$ for any $j \in[d]$. For large $\left\langle\mathbf{u}_{1}, \mathbf{1}\right\rangle^{2}$, it is possible to make $\mathbf{Y}_{: j}$ align to \mathbf{u}_{1} faster by sampling entries of \mathbf{S} i.i.d. from non-centered distributions.

$\overline{\text { Algorithm: } \operatorname{RandSum}(\mathbf{A}, q, d, p)}$
$\mathbf{S}_{1} \sim \mathcal{N}(0,1)^{n \times\left[\frac{d}{2}\right\rceil}, \mathbf{S}_{2} \sim \operatorname{Bernoulli}(p)^{n \times\left\lfloor\frac{d}{2}\right\rfloor} ;$
$2 \mathbf{S} \leftarrow\left[\mathbf{S}_{1} \quad \mathbf{S}_{2}\right] ;$

Positive semidefinite matices
(Theorem 5) For $\mathbf{A} \succcurlyeq 0, \hat{\mathbf{u}}=\operatorname{RandSum}(\mathbf{A}, q, d, p)$ satisfies

$$
R(\hat{\mathbf{u}})=\left(\Omega\left(\frac{\max \left\{d,\left\langle\mathbf{u}_{1}, \mathbf{1}_{n}\right\rangle^{2}\right\}}{n}\right)\right)^{\frac{1}{2 q+1}} \text { w.p. } 1-e^{-\Omega(d)}
$$

Indefinite matrices:
Under one additional assumption, the guarantee of RSVD and RandSum for p.s.d. matrices generalize to indefinite matrices.

References

[1] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 2011.
[2] Moritz Hardt and Eric Price. The noisy power method: a meta algorithm with applications. In Proc. of NeurIPS, 2014.
[3] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate singular value decomposition. In Proc. of NeurIPS, 2015.
[4] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight query complexity lower bounds for pca via finite sample deformed wigner law. In Proc. of STOC, 2018.

