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Abstract

Graphs have rich structures at both local and global scales. By exploiting
structural properties in certain graph problems, it is possible to design com-
putationally efficient algorithms or refine performance analysis. This thesis is
divided into two parts: (i) designing new methods for discovering structure from
graphs and (ii) studying the interplay between graphs and combinatorial multi-arm
bandits. They differ in how structures are defined, discovered, and utilized.

In part (i), we start with a graph-mining problem on signed networks [TOG20],
where the graph patterns we aim to detect are groups with mostly positive intra-
group edges and mostly negative inter-group edges. We design our objective
such that, given a solution, it reflects how well that solution matches the desired
pattern. Our proposed algorithm makes no assumptions about the graph. It
demonstrates competitive empirical performance in real-world graphs and syn-
thetic graphs. The performance evaluation is conducted through a worst-case
analysis, approximating the optimal solution. Moreover, we extend our conflicting-
group detection [BGG+19, TOG20] as well as other graph-mining tasks (such as
fair densest-subgraph detection [ABF+20], two-community detection [New06])
to a memory-limited and pass-limited setting. Under such a setting, Randomized
SVD, which has been proposed by [HMT11], is the most preferable method in
the memory-limited and pass-limited setting. However, for an input matrix of size
n× n, it has no guarantee in the o(lnn)-pass regime, which is of most interest
to practitioners. We hence derive a tighter analysis [TWA+22] for Randomized
SVD for positive semi-definite matrices in any number of passes and for indefinite
matrices under certain conditions. Furthermore, we initiate the study of a mixture
of Johnson-Lindenstrauss distribution and the 0/1 Bernoulli distribution. We show
that this mixture helps make the detection of 2-conflicting groups [BGG+19]
more efficient.

In part (ii), we study combinatorial multi-arm bandits problems, where the
graph properties play important roles but are somewhat hidden in the optimization
problem. Instead, one derives the fundamental limit bounds on either the expected
sample complexity or the expected cumulative regret, typically in the information-
theoretical sense, and then explores the abstract properties associated with those
bounds to solve the problem satisfactorily, either statistically or computationally.
We focus on combiantorial semi-bandits where the learner observes individual
feedbacks for each arm part of the selection. This formulation models many
real-world problems, including online ranking [DKC21] in recommendation sys-
tems, network routing [CLK+14] in internet service providers, loan assignment
[KWA+14], path planning [JMKK21], and influence marketing [Per22]. For best
arm identification with fixed confidence, we propose the first polynomial-time
algorithm whose sample complexity is instance-specifically optimal in high confi-
dence regime and has polynomial dependency on the number of arms in moderate
confidence regime. For regret minimization, we propose the first algorithm whose
per-round time complexity is sublinear in the number of arms while matching the
instance-specifically gap-dependent lower bound asymptotically.



Sammanfattning

Grafer har rika strukturer både på lokal och global skala. Genom att utnyttja
strukturella egenskaper i vissa grafproblem är det möjligt att designa beräknings-
mässigt effektiva algoritmer eller förfina prestandaanalysen. Denna avhandling
är uppdelad i två delar: (i) att designa nya metoder för att upptäcka struktur från
grafer och (ii) att studera samspelet mellan grafer och kombinatoriska multi-arm
banditer. De skiljer sig åt i hur strukturer definieras, upptäcks och utnyttjas.

I del (i) börjar vi med ett grafgruvningsproblem på signerade nätverk [TOG20],
där de grafmönster vi siktar på att upptäcka är grupper med mestadels positiva
intra-gruppkanter och mestadels negativa inter-gruppkanter. Vi utformar vårt mål
så att, givet en lösning, det återspeglar hur väl den lösningen matchar det önskade
mönstret. Vår föreslagna algoritm gör inga antaganden om grafen. Den visar
konkurrenskraftig empirisk prestanda i verkliga grafer och syntetiska grafer. Pre-
standautvärderingen genomförs genom en värsta fall-analys, som approximativt
finner den optimala lösningen. Dessutom utvidgar vi vår konfliktgruppsdetek-
tion [BGG+19, TOG20] samt andra grafgruvningsuppgifter (såsom rättvis tätaste
subgrafdetektion [ABF+20], två-samhällesdetektion [New06]) till en minnesbe-
gränsad och passbegränsad inställning. Under en sådan inställning är Randomized
SVD, som föreslagits av [HMT11], den mest föredragna metoden i en minnes-
begränsad och passbegränsad inställning. Men för en ingångsmatris av storlek
n × n har den ingen garanti i o(lnn)-passregimen, vilket är av största intresse
för praktiker. Vi härleder därför en stramare analys [TWA+22] för Randomized
SVD för positivt semi-definita matriser i vilket antal pass som helst och för inde-
finita matriser under vissa villkor. Vidare initierar vi studien av en blandning av
Johnson-Lindenstrauss distribution och 0/1 Bernoulli-distributionen. Vi visar att
denna blandning hjälper till att göra detektionen av 2-konfliktgrupper [BGG+19]
mer effektiv.

I del (ii) studerar vi kombinatoriska multi-arm banditproblem, där grafer-
nas egenskaper spelar viktiga roller men är något dolda i optimeringsproblemet.
Istället härleder man de fundamentala gränserna för antingen den förväntade
provtagningskomplexiteten eller den förväntade kumulativa ånger, vanligtvis i
informations-teoretisk mening, och utforskar sedan de abstrakta egenskaperna
associerade med dessa gränser för att lösa problemet på ett tillfredsställande sätt,
antingen statistiskt eller beräkningsmässigt. Vi fokuserar på kombinatoriska semi-
banditer där läraren observerar individuella återkopplingar för varje arm som är en
del av urvalet. Denna formulering modellerar många verkliga problem, inklusive
online ranking [DKC21] i rekommendationssystem, nätverksrouting [CLK+14]
hos internetleverantörer, lånefördelning [KWA+14], vägplanering [JMKK21],
och influencer-marknadsföring [Per22]. För bästa armidentifiering med fast förtro-
ende föreslår vi den första polynomtidalgoritmen vars provtagningskomplexitet är
instansspecifikt optimal i hög förtroenderegim och har polynomberoende på anta-
let armar i måttlig förtroenderegim. För ångerminimering föreslår vi den första
algoritmen vars per-rundans tidskomplexitet är sublinjär i antalet armar samtidigt
som den matchar den instansspecifikt gapberoende nedre gränsen asymptotiskt.
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Chapter 1

Introduction

This thesis is centered around two themes: graph mining and combinatorial multi-
armed bandits. For both themes, we are interested in designing computationally
efficient algorithms with provable guarantees. For graph mining problems, we design
an objective function that reflects how well the solution matches the pattern we aim
to detect, and design computationally efficient algorithms to find such patterns with
provable guarantees. For combinatorial multi-armed bandits, we study the fundamental
limit satisfied by any reasonably good algorithm, and design algorithms exploring
different trade-offs between statistical efficiency and computational efficiency.

1.1 Graph mining

Graph mining provides a set of tools and techniques that are useful to (i) extract
patterns from graph-structured data, such as identifying frequent subgraphs, detecting
communities, and predicting links, and (ii) analyze the properties of real-world graphs,
such as their degree distribution, clustering coefficient, diameter, and other structural
characteristics. These tools and techniques enable us to gain insights into the underly-
ing structures and dynamics of complex systems and enhance our understanding of
their behavior. In this thesis, we will be discussing the following graph mining tasks:

• The problem of densest subgraph detection is that: given an undirected graph
G = (V,E), the goal is to find the node subset S ⊆ V whose edge density
|E(S)|
|S| is maximized, where E(S) denotes the set of edges induced by S. Dens-

est subgraph detection can be used to detect (a) tightly connected communities
in social networks, (b) fraudulent reviews in a user-product bipartite graph, (c)
proteins that are regulating the same process in a protein-protein interaction
network, (d) money laundering in a multipartite directed transactions network,
etc. See a recent survey [LMFB23] for more applications on densest subgraph
detection.

• Graph clustering aims to identify groups of nodes that are more similar or more
connected to each other than the rest of the network. These densely connected

1
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groups, or clusters, often represent communities in social networks, modules
in biological networks, or topical clusters in web graphs. Depending on the
quality measure of the clustering, graph clustering can be further divided into
(a) modularity-based, (b) cut-based, (c) density-based, and (d) other approaches.
In this thesis, we will discuss Newsman’s modularity-based algorithm [New06]
for detecting 2 communities. It works by finding the top-eigenvector u of the
modularity matrix B where Bi,j = Ai,j − deg(i) deg(j)

2|E| , and then rounding u to

a vector in {±1}|V | with 1 (resp. −1) representing the node is in the first (resp.
second) community.

Signed graph mining

Signed graph mining deals with the analysis of signed graphs which are graphs where
each edge is labeled as either positive or negative. A positive edge represents relation-
ships such as trust, like, or friendship, and a negative edge represents relationships such
as distrust, dislike, or enmity. Common signed graph mining tasks include: signed link
prediction [WSLX17], signed community detection [CDGT19], node ranking [SJ14],
sentiment analysis [CLTL17], and balance theory analysis [LHK10]. These tasks
and related methodologies provide valuable insights into the structure and dynamics
of signed networks and can be applied in various domains such as social network
analysis, e-commerce, bioinformatics, and cybersecurity. Signed graph mining can
help understand and predict human behavior, detect communities and conflicts, and
analyze sentiment and status.

In this thesis, we study a specific signed graph mining task called conflicting group
detection in Paper A. In the conflicting group detection, we are given a signed graph,
and the goal is to identify k disjoint node subsets S1, · · · , Sk such that edges between
any two groups Si and Sj for any i ̸= j are mostly negative and edges within each
group Si are mostly positive. A conflicting group can represent a set of individuals
with viewpoints conflicting with other groups of users in social networks or politi-
cal networks. Identifying conflicting groups can provide valuable insights into the
structure and dynamics of social, political, or organizational networks. It can help
predict future conflicts, understand the root causes of existing conflicts, and design
interventions to resolve or mitigate conflicts.

Randomized linear algebra

Randomized Linear Algebra is a field that utilizes randomization techniques to develop
efficient algorithms for various linear algebra problems, especially those involving
large-scale matrices. The primary goal of randomized linear algebra is to develop
algorithms that are faster, more scalable, and require less memory than traditional
deterministic methods. Randomized linear algebra is particularly important in the
context of big data, where the size of the data often makes traditional methods in-
feasible. Key techniques include random sampling, random projection, randomized
matrix decompositions, sketching, and randomized iterative methods. Applications of
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randomized linear algebra span multiple domains including machine learning, data
mining, statistics, signal processing, and scientific computing. For instance, in machine
learning, randomized methods are used for tasks like principal component analysis
(PCA), k-means clustering, regression, and community detection.

In this thesis, in Paper B, we will be discussing random projection and randomized
matrix decomposition. Randomized SVD [HMT11] provides a memory-efficient way
to perform matrix factorization. Given a symmetric matrix A ∈ Rn×n, Randomized
SVD works by (a) projecting Aq onto a random matrix S ∼ N (0, 1)n×d to Y = AqS
for some q ∈ N, (b) performing QR decomposition on Y = QR, and then (c) comput-
ing the approximation of the i-th largest eigenvectors of A by using Qui(Q

TAQ),
where ui(·) denotes the i-th eigenvector of the input matrix. The theoretical guarantee
of Randomized SVD using a random matrix S of size n× d is:

E
[∥∥A−QQTA

∥∥
2

]
≤ c
√
λk+1(A), (1.1)

where λi(·) is the i-th eigenvalue of the input matrix, and c = (1 +
√

k
d−k−1 +

e
√
d

d−k

√
n− k) 1

2q+1 . In Paper B, we focus on the top eigenvector, and aim to analyze the
approximated top eigenvector û ∈ Sn−1 returned by Randomized SVD with respect
to the multiplicative ratio objective:

R(û) =
ûTAû

λ1(A)
,

where the multiplicative ratio R(û) is the ratio between the Rayleigh quotient ûTAû
and the top eigenvalue λ1(A). Notice that for a positive semi-definite matrix A, it is
possible to convert (1.1) into a guarantee of R(û) by the following steps:

• Applying Davis-Kahan theorem [YWS15] results in:

√
1− ⟨û,u1(A)⟩2 ≤

∥∥A−QQTA
∥∥
2

λ1(A)− λ2(A)

and combining with (1.1) yields that:

⟨û,u1(A))⟩ ≥
√
1− c2λ2(A)

(λ1(A)− λ2(A))2
.

• A lower bound of R(û) can be derived by observing that:

ûTAû ≥ λ1(A) ⟨û,u1(A))⟩2 .

However, the converted guarantee of R(û) unfortunately depends on the eigengap
λ1(A) − λ2(A) of the first and the second largest eigenvalue of A. In Paper B,
we develop a tight analysis of Randomized SVD with respect to R(û) that does not
depend on the eigengap.
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1.2 Combinatorial multi-armed bandits

Combinatorial multi-armed bandit is an extension of the classic multi-armed ban-
dit problem. The multi-armed bandit problem models an agent that simultaneously
attempts to acquire new knowledge (exploration) and optimize decisions based on
existing knowledge (exploitation) while interacting with an environment. The dif-
ference between the combinatorial multi-armed bandit and the multi-armed bandit
problem is that in each round, the learner selects a subset of arms that satisfy certain
combinatorial constraints, instead of choosing a single arm as in the multi-armed
bandit. Combinatorial multi-armed bandits can be used to model many real-world
tasks such as online ranking [DKC21] in recommendation systems, network routing
[CLK+14] in internet service providers, loan assignment [KWA+14], path planning
[JMKK21], and influence marketing [Per22].

An instance of combinatorial multi-armed bandit is parameterized by ([K],X ,µ),
where [K] is the set of arms, X ⊆ {0, 1}K is the set of actions satisfying certain
combinatorial constraints, and µ ∈ RK is a mean vector where each component µk

is the expectation of arm k’s reward distribution νk. At each round t, the learner
selects an action x(t) ⊆ [K] from the action set X . There are two types of feedback
models. In the semi-bandit feedback model, the learner observes yk(t) ∼ νk for each
of the arm k ∈ supp (x(t)). In the full-bandit feedback model, the learner observes
r(y(t),x(t)) only, where yk(t) ∼ νk for k ∈ [K] and r is some reward function. The
objectives are related to the best action i⋆(µ) ∈ argmaxx∈X r(µ,x) that maximizes
the expected reward. There are two popular objectives:

• Regret minimization aims to minimize the expected cumulative regret (or equiv-
alently maximize the expected cumulative reward), as compared to an algorithm
that knows µ and always chooses the best action i⋆(µ) that maximizes the ex-
pected reward. For this setting, the learner has to balance the trade-off between
exploration and exploitation.

• Pure exploration aims to identify the correct answer (a) with fixed confidence
or (b) with a fixed budget. The correct answer can be the best action i⋆(µ) that
maximizes the expected rewards, or any ϵ-good action [BDS22]. For (a), the
goal is to identify the correct answer with minimal sample complexity. For (b),
the goal is to minimize the error probability after a fixed number of samples.

Regret minimization

In regret minimization, instantaneous regret is defined as the difference between
the expected reward of the best action and that of the action chosen. The goal of
regret minimization is to minimize the total regret cumulative over all rounds. Regret
minimization is a very general framework that can be applied to many different types
of decision problems, including online learning [RST10], reinforcement learning
[AJO08], and game theory [GGM08].
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In this thesis, we focus on combinatorial semi-bandits. At each round, the learner se-
lects a subset of arms that satisfy certain combinatorial constraints, observes individual
feedback for each of the arms part of the selection, and incurs an instantaneous regret.
The goal is to design algorithms such that the total regret is sublinear in the number
of rounds. For matroid structures, Combinatorial Upper Confidence Bound (CUCB)
[GKJ12, CWY13, KWA+14, KWAS15] is a competitive method whose regret bound
matches the gap-dependent lower bound proposed by Kveton et al. [KWA+14], and
KL-based Efficient Sampling for Matroids (KL-OSM) [TP16] is an optimal algorithm
whose regret bound matches the instance-specific lower bound. However, both algo-
rithms require the complexity of the time per round to be at least linear to K, where K
is the number of arms. In Paper D, we develop the first matroid semi-bandit algorithm
whose per-round time complexity is sublinear in K while matching the gap-dependent
lower bound asymptotically. Our method is particularly suitable for large values of K.

Pure exploration

The goal of pure exploration is to identify the set of correct answers (a) with fixed
confidence using as few samples as possible, or (b) with a fixed budget achieving as
low error probability as possible. Pure exploration is particularly useful in situations
where the cost of exploration is low compared to the long-term benefits of finding
the correct answers. For example, it might be used in clinical trials to find the most
effective treatment, in A/B testing to find the best website design, or in machine
learning hyperparameter tuning to find the best set of parameters.

In this thesis, we focus on pure exploration (a) with fixed confidence and semi-bandit
feedback under combinatorial structures. In each round, the learner selects a subset of
arms that satisfy certain combinatorial constraints and observes individual feedback
for each arm that is part of the selection. In the problem of best arm identification, the
sample complexity lower bound has been derived by the change-of-measure technique
[KCG16, GK16], and the statistically optimal algorithms such as FWS [WTP21]
and CombGame [JMKK21] have been proposed. However, these algorithms are not
computationally efficient. In Paper C, we design the first polynomial-time algorithm
whose sample complexity is instance-specifically optimal in the high-confidence
regime and has a polynomial dependency on the number of arms in the moderate
confidence regime.

1.3 Overview of thesis

This thesis contributes to various aspects of graph mining and combinatorial multi-
armed bandits. Paper A focuses on one particular signed graph mining task. Paper B
extends the first Paper A to the memory-limited setting where techniques from ran-
domized numerical linear algebra are particularly useful. Paper C considers the pure
exploration problem for combinatorial semi-bandits. Paper D focuses on the regret
minimization for combinatorial semi-bandits. Both Paper C and Paper D contribute to
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designing faster algorithms for combinatorial semi-bandits. The contributions of each
paper are as follows.

In Paper A, a signed graph mining task called k-conflicting group detection is con-
sidered. The goal is to identify k disjoint node subsets S1, · · · , Sk such that edges
between any Si, Sj for i ̸= j are mostly negative and edges within Si for any i ∈ [k]
are mostly positive. This problem is APX-hard [BCMV12, BGG+19], and we de-
velop a computationally efficient algorithm based on (a) the top-eigenvector of the
(modified) signed adjacency matrix, and (b) the rounding technique to assign the group
membership of the nodes. Our developed technique is empirically competitive in both
real-world signed networks and synthetic stochastic block models.

In Paper B, we analyzed and improved the theoretical guarantee of Randomized SVD
(RSVD) [HMT11] for graph mining tasks. These tasks include principal component
analysis [Jol86], fair dense subgraph detection [ABF+20], 2-community detection
[New06], and k-conflicting group detection (Paper A). For the top eigenvector û of
a symmetric positive semi-definite matrix A ∈ Rn×n approximated by RSVD, prior
analysis required Ω(lnn) passes to ensure a non-trivial result for the multiplicative
ratio R(û) = ûTAû/λ1(A), where λ1(·) denotes the largest eigenvalue of the
given matrix. We show that R(û) = (Ω( dn ))

1
2q+1 with a probability of at least

1 − e−Ω(d) for any number q of passes and O(nd) space. This result provides a
theoretical guarantee for practical settings with o(lnn) or even a constant number of
passes. In addition, we consider extensions to indefinite matrices and modifications
of RSVD where the random projection matrix is generated by standard Gaussian and
0/1 Bernoulli distributions. We show that RSVD with such random projection matrix
expedites the identification of k-conflicting groups (Paper A) when compared to the
standard RSVD.

In Paper C, we study the problem of best arm identification with fixed confidence
for combinatorial semi-bandits. The sample complexity lower bound satisfied by any
reasonably good algorithm is derived from previous work [JMKK21], and there exist
statistically optimal algorithms such as FWS [WTP21] and CombGame [JMKK21].
However, none of these optimal algorithms is computationally efficient. We inspect
the optimization problem of the sample complexity lower bound and obtain a useful
structural property that allows us to design a computationally efficient oracle (called
MCP) based on a two-player no-regret learning algorithm. This MCP oracle is necessary
for the design of optimal best arm identification algorithms. For example, MCP is
used in the Chernoff stopping rule [GK16] and also in the sampling algorithm of
[WTP21, JMKK21]. Based on the MCP oracle, we design the first statistically optimal
and computationally efficient algorithm for this problem.

In Paper D, matroid semi-bandit is studied. CUCB [CWY13] and KL-OSM [TP16]
are two competitive algorithms for this setting. The regret upper bound of the for-
mer achieves the gap-dependent lower bound while that of the latter achieves the
instance-specific lower bound. Both algorithms require a time complexity of at least
Ω(K) and require a O(K(logK + Tmember))-time greedy algorithm to compute their
sampling strategy, where K is the number of arms and Tmember is the time to query
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the membership oracle of the given matroid. We develop a sublinear-time algorithm
for this problem based on a dynamic algorithm that maintains a maximum-weight base
over inner product weights. As all arms change at each round, the existing dynamic
algorithms are not directly applicable. Our insight for addressing this issue is that an
UCB index can be decomposed into an inner product of (i) a feature, which depends
on the arm k and is a pair of empirical reward estimates and radius of the confidence
interval (ii) a query, which depends only on the round t. Our proposed dynamic
algorithm consists of two speedup techniques. One is feature rounding, which rounds
each feature into a few bins to reduce the number of distinct features to consider.
The other is the minimum hitting set, which allows us to compute a small number of
queries in advance and correctly identify a maximum weight base for any query.

The thesis is organized as follows:

• In Chapter 2, the basic concepts required in Paper A, Paper B, Paper C, and
Paper D are introduced, and the important related works in these papers are
discussed

• In Chapter 3, an overview of the results of Paper A and Paper B is presented

• In Chapter 4, an overview of the results of Paper C and Paper D is presented

• In Chapter 5, the challenges and open problems left in these papers are discussed





Chapter 2

Background

This chapter serves to provide basic concepts and tools for understanding Paper A,
Paper B, Paper C, and Paper D. Section 2.1 provides the definition of approximation
algorithms as required in Paper A. Section 2.2 provides an overview of the technique
of random projection, which is the main topic of Paper B. Section 2.3, Section 2.4,
Section 2.6, Section 2.7, and Section 2.8 are tools used by Paper C. Specifically:

• Section 2.3 provides an introduction to the Lagrangian multiplier methods

• Section 2.4 provides an introduction to the minimax theorem

• Section 2.6 provides an introduction to the Frank-Wolfe algorithm

• Section 2.7 provides an introduction to the envelope theorem

• Section 2.8 provides an introduction to the terminologies of best arm identifica-
tion

Section 2.5 provides an introduction to matroids as required by Paper D. Finally, the
chapter concludes with Section 2.9 and Section 2.10, where state-of-the-art methods
are discussed in Section 2.9, and the most important related works are reviewed in
Section 2.10.

2.1 Approximation algorithms

Approximation algorithms are polynomial-time algorithms that find solutions to op-
timization problems with provable guarantees with respect to the optimal solution.
There are many established techniques for designing an approximation algorithm,
such as greedy strategies, local search, dynamic programming, linear- and convex-
programming relaxations, primal-dual methods, dual fitting, metric embedding, and
random sampling. For a maximization problem with objective function f , we say that
an algorithm A is an α-approximation algorithm if A runs in polynomial time and
returns a solution x that satisfies

αOPT ≤ f(x) ≤ OPT and α < 1,

9
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where OPT is an optimal value of the problem. For minimization problems, we say
that an algorithm A is a α-approximation algorithm if A runs in polynomial time and
returns a solution x that satisfies

OPT ≤ f(x) ≤ αOPT and α > 1.

We say that a problem is APX-hard if there does not exist an approximation algorithm
with a constant approximation ratio unless P = NP .

2.2 Random projection

Random projection refers to the technique of projecting a set of points from a high-
dimensional space to a randomly chosen low-dimensional subspace [Vem05]. Let
u = (u1, · · · , un)T and R = [r1, · · · , rd] be a n× d uniform random orthonormal
matrix. Then, the projected vector is defined as

v =

√
n

d
RTu and E

[
∥v∥2

]
= ∥u∥2 .

To understand the normalization factor n/d, here we present the intuition due to Sanjoy
Dasgupta and Anupam Gupta [DG03]: since each of the n dimensions is equally likely
to be chosen, i.e., E

[
⟨v, ri⟩2

]
= 1/n, we have

E
[
cos2 θ(u,R)

]
=

d∑

i=1

E
[
⟨u, ri⟩2

]
=
d

n
.

One popular way [HP14] to approximate R is to sample the entries of R by i.i.d. from
the standard Gaussian N (0, 1) distribution, and the following property holds: Let
u ∈ Rn. Then,

P
[
cos2 θ(u,R) = Θ

(
d

n

)]
≥ 1− e−Ω(d), (2.1)

where θ(u,R) = cos−1
(
maxx∈range(R)

⟨u,x⟩
∥u∥2∥x∥2

)
is the projection angle. An appli-

cation of Equation (2.1) is the famous Johnson-Lindenstrauss Lemma (see Theorem
5.3.1 in [Ver18]): Let X be a set of N points in Rn and ϵ > 0. If d = Ω( 1

ϵ2 logN),
then with probability at least 1− 2 exp(−Ω(ϵ2d)),

(1− ϵ) ∥x− y∥2 ≤
√
n

d
∥R(x− y)∥2 ≤ (1 + ϵ) ∥x− y∥2

holds for all x,y ∈ X .

2.3 Lagrangian multiplier method

Here we present the material from Chapter 5 in the book by Vishnoi [Vis21]. Consider
a problem:

inf
x∈Rn

f(x) subject to fi(x) ≤ 0 for i = 1, · · · ,m and hi(x) = 0 for i = 1, · · · , p.



11 2.4. Max-min inequality and minimax theorem

The idea of the Lagrangian multiplier method is to "move the constraints to the
objective". Define the Lagrangian function

L(x,λ,µ) = f(x) +

m∑

j=1

λifi(x) +

p∑

i=1

µihi(x).

The relationship between the optimum value y∗ = infx∈Rn supλ≥0,µ L(x,λ,µ), and
the Lagrangian dual function

g(λ,µ) = inf
x∈Rn

L(x,λ,µ)

is that g(λ,µ) ≤ y∗ holds for any λ ≥ 0 and µ. In other words, the Lagrangian
dual function provides a lower bound for the optimum. Thus, we have weak duality
supλ≥0,µ g(λ,µ) ≤ y∗, which is also an application of the max-min inequality in
Section 2.4. For the strong duality, it is equivalent to the Karush–Kuhn–Tucker (KKT)
conditions. Suppose x⋆ ∈ Rn, λ⋆ ∈ Rm and µ⋆ ∈ Rp satisfy KKT optimality
conditions:

(i) Primal feasibility: fj(x⋆) ≥ 0 for j = 1, · · · ,m and hi(x⋆) = 0 for i =
1, · · · , p

(ii) Dual feasibility: λ⋆ ≥ 0

(iii) Stationary ∂xL(x⋆,λ⋆,µ⋆) = 0

(iv) Complementary slackness: λ⋆jfj(x
⋆) = 0 for all j = 1, · · · ,m

Then, we have the strong duality: f(x⋆) = g(λ⋆,µ⋆).

2.4 Max-min inequality and minimax theorem

For any function f : X × Y → R, we have the max-min inequality

sup
x∈X

inf
y∈Y

f(x,y) ≤ inf
y∈Y

sup
x∈X

f(x,y).

When the equality holds, one says that f , X , and Y satisfies the strong max-min
inequality (or the saddle-point property). For special case when X and Y are both
compact convex sets, then one has the minimax theorem:

max
x∈X

min
y∈Y

f(x,y) = min
y∈Y

max
x∈X

f(x,y).

2.5 Matroids

Here we present a short introduction taken from [KWA+14]. A matroid is a pair
M = (E, I), where E = {1, · · · ,K} is called the ground set, and I called the
independent sets which is the set of the subsets of E. For I, in addition to ∅ ∈ I, it
has to satisfies two properties:
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• (downward closure) For any Y ∈ I, if X ⊂ Y , then X ∈ I
• (augmentation property) For any X,Y ∈ I, if |X| < |Y |, then there eixsts
e ∈ Y such that X ∪ {e} ∈ I

A set X is called a basis of the matroidM if |X| is maximum. All bases have the
same cardinality which is known as the rank of the matroid. A weighted matroid is a
matroid associated with a vector w ∈ RK

+ . The problem of finding a maximum-weight
basis of a matroid is

argmax
X∈I

∑

e∈X

we. (2.2)

It is well-known that (2.2) can be solved by the following greedy algorithm:

• X⋆ ← ∅. Sort w in the non-increasing order such that wi1 ≥ · · · ≥ wiK .

• Repeatedly add ij to X⋆ if X⋆ ∪{ij} ∈ I and then j = j+1 until |X⋆| equals
the rank ofM.

2.6 Frank-Wolfe algorithm

We present materials from [Jag13] for the Frank-Wolfe algorithm. Suppose we would
like to solve the constrained convex optimization problem of the form:

min
x∈D

f(x), (2.3)

where we assume that the function f is convex and continuously differentiable and the
domain D is a compact convex set of any vector space. For the optimization problem
(2.3), one of the earliest and simplest iterative optimizers is given by the Frank-Wolfe
method [FW56] (also known as conditional gradient method).

The idea of the Frank-Wolfe method (FW) is as follows: At the current position x(k),
the algorithm considers the linearization of the objective function

f(x(k)) +
〈
y − x(k),∇f(x(k))

〉
≤ f(y),

where the left-hand side is the linearization of the objective function, and the inequality
is due to the convexity of f . Then, the FW method moves towards a minimizer of this
linear function since

min
y∈D

{
f(x(k)) +

〈
y − x(k),∇f(x(k))

〉}
≤ min

y∈D
f(y),

where the right-hand side is the minimization problem (2.3). Hence, the value

g(x) = max
y∈D
⟨x− y,∇f(x)⟩

serves as the upper bound of f(x) −miny∈D f(y). The value g(x(k)) is known as
the duality gap of the current point x(k). To summarize, the FW algorithm works as
follows:
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• Let x(0) ∈ D.

• For (k = 0, · · · ,K) perform

{
y ← argminy∈D

〈
y,∇f(x(k))

〉

x(k+1) = k
k+2x

(k) + 2
k+2y

.

The convergence of the FW algorithm is based on a measure of non-linearity of the
objective function f in the domain D. The curvature Cf of f with respect to D is
defined as

sup
x,y∈D
γ∈[0,1]

z=x+γ(y−x)

2

γ2
(f(z)− f(x) + ⟨z − x,∇f(x)⟩) . (2.4)

A bounded Cf means that ∇f(z) from the linearization of f given by ∇f(x) is
bounded. In (2.4), f(z) − f(x) + ⟨z − x,∇f(x)⟩ is also known as the Bregman
divergence defined by f . The guarantee of FW method is that:

Theorem 1. For any k ∈ N, the iterate x(k) of the FW algorithm satisfies

f(x(k))−min
y∈D

f(y) ≤ 2Cf

k + 2
.

The proof of the convergence relies on expressing the improvement per step in terms
of the current duality gap.

2.7 Envelope theorem

The envelope theorem was used for the first time by economists to solve concave
optimization problems appearing in demand theory [MS02]. It was later extended to
study incentive constraints in contract theory and game theory to examine nonconvex
production problems and to develop the theory of monotone or robust comparative
statistics. Here we present a variant of the envelope theorem from Lemma 7 in the
paper by Wang et al. [WTP21]:

Theorem 2. Let X be a metric space and Y be a non-empty open subset in RK . Let
u : X× Y → R and assume ∂u

∂y exists and is continuous in X× Y . For each y ∈ Y ,
let x⋆(y) be the minimizer of u(x, y) over x ∈ X. Set

v(y) = u(x⋆(y), y).

Assume that x⋆ : Y → X is a continuous function. Then, v is continuously differen-
tiable and

d

dy
v(y) =

∂u

∂y
(x⋆(y), y).

In Paper C, the algorithm at each round computes the gradient of the function

f(ω,µ) = inf
λ∈C

K∑

k=1

ωk(µk − λk)2
2
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with respect to the first parameter, where C is a convex set. The gradient∇ωf(ω,µ)
can be evaluated by envelope theorem, which yields that:

∇ωf(ω,µ) =

K∑

k=1

(µk − λ⋆k)2
2

ek,

where ek is the vector with 1 only on the kth element and 0’s elsewhere, λ⋆ ∈
argminλ∈cl(C)

∑K
k=1

ωk(µk,λk)
2

2 , and cl (·) is the closure of the given set.

2.8 Best arm identification

This section is served to introduce the terminology of paper C. Refer to the book by
Lattimore and Szepesvári [LS20] for a more detailed introduction on the topic.

Best arm identification is one of the pure exploration tasks. There are two settings:
fixed-confidence and fixed-budget settings. For the fixed-confidence setting, the goal
is to identify the best answer using as few samples as possible. For the fixed-budget
setting, the goal is to minimize the error probability after a fixed number of samples.
Paper C focuses on the fixed-confidence setting. There are two notions of efficiency:
the statistical efficiency and the computational efficiency. Statistical efficiency refers
to the theoretical guarantee of the expected sample complexity. We focus on the
instance-dependent sample complexity bounds which means the sample complexity
bounds depend on each specific instance, rather than uniformly hold for all the in-
stances. Moreover, we say that an algorithm is statistically optimal if its expected
sample complexity matches the expected sample complexity lower bound by [GK16]
asymptotically as δ goes to 0. Computational efficiency refers to having the algorithm
run in time polynomial in the problem parameters (such as the number of arms).

For the best arm identification problem, the arms may have structures. We say that a
setting has an underlying structure if knowing the expected reward of an arm helps to
know the expected rewards of the other arms. For example, in the linear-structured
setting, there are K arms with known features a1, · · · ,aK ∈ Rd and a hidden
unknown parameter θ ∈ Rd. The expected reward of arm i is ⟨ai,θ⟩, so pulling one
arm reveals part of the information of the other arms. Similarly, we say that a setting
is unstructured if knowing the expected reward of an arm does not help to know the
expected rewards of other arms. This setting is also known as the classical setting
which has K arms with mean µ1, · · · , µK ∈ R and the goal is to identify the arm with
the highest expected reward. In Paper C, we study the combinatorial structure with
semi-bandit feedbacks. In the semi-bandit feedback model, the individual rewards
of all the arms in the pulled action are observed. This contrasts to the full-bandit
feedback, where only the sum of the rewards of the pulled action is observed.

2.9 Overview of the state-of-the-art results

In this section, we discuss the competitive methods before Paper A, Paper B, Paper C,
and Paper D.
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Discovering k-conflicting Groups in Signed Networks (NeurIPS’20)

In Paper A, we aim to detect k disjoint groups such that there are mostly positive
intra-group edges and mostly negative inter-group edges. Different from the signed
clustering [CDGT19], we allow nodes to be neutral with respect to the conflicting
structure.

Random-Eigensign. For the special case of k = 2, the problem was studied by
Bonchi et al. [BGG+19]. They proposed the following problem formulation:

max
S1,S2⊆V
S1∩S2=∅

∑
(i,j)∈E(Sh)

h=1,2

Ai,j +
∑

(i,j)∈E(S1,S2)
(−Ai,j)

|S1 ∪ S2|
= max

x∈{0,±1}n

xTAx

xTx
, (2.5)

where A is the signed adjacency matrix. In other words, (2.5) can be compactly
written as a Rayleigh quotient optimization problem. They showed that 2-conflicting
group detection problem (2.5) is APX-hard by reduction from Correlation Clustering
[BBC04], and proposed a O(√n)-approximation randomized rounding algorithm as
follows:

ũk =

{
Bernoulli(|uk|) if uk ≥ 0

−Bernoulli(|uk|) if uk < 0
,∀k = 1, · · · , n,

where u is the top eigenvector of A.

QP-Ratio. The problem formulation (2.5) proposed by Bonchi et al. [BGG+19]
is also studied by Bhaskara et al. [BCMV12] as a QP-Ratio problem. They also
showed that solving 2-conflicting group detection problem (2.5) is APX-hard by
reducing from Max k-AND [Fei02] and ratio version of Unique Games Conjecture.
They considered a SDP relaxation as follows:

max
w1,··· ,wn

∑

i,j

Aij ⟨wi,wj⟩ subject to
∑

i

w2
i = 1 and |⟨wi,wj⟩| ≤ ∥wi∥22 ,∀i, j.

(2.6)
They proposed a rounding algorithm based on the SDP solution. It achievesO(n 1

3 lnn)-
approximation for general graphs andO(n 1

4 ln2 n)-approximation for bipartite graphs.

Finding k-Oppositive Cohesive Groups (FOCG). Chu et. al. [CWP+16] studies
k-conflicting group detection with a different problem formulation. They formulate
the problem as trace-maximization, where each group is represented as a simplex
with nonzero entries indicating the participation of the nodes in the groups. However,
their proposed method FOCG finds conflicting groups only within local regions and is
sensitive to initialization, often converging to local maxima.

Signed Positive Over Negative Generalized Eigenproblem (SPONGE). The state
of the art in signed clustering is SPONGE [CDGT19]. It is based on a generalized
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eigenvalue problem for constrained clustering and works especially well on sparse
graphs and large k on the stochastic block model. As we will see in Paper A, SPONGE
does not perform well on real-world graphs.

Improved Analysis of Randomized SVD for Top-Eigenvector
Approximation (AISTATS’22)

Prior to our Paper B, the theoretical guarantee of RSVD [HMT11] for the metric

R(û) =
ûTAû

λ1(A)

that we are interested in is shown only for positive semi-definite matrices. Musco and
Musco [MM15] showed that RSVD using O(nd) space and q passes results in

P
[
R(û) ≥ 1−O

(
lnn

q

)]
≥ 1− e−Ω(d).

This analysis shown by Simchowitz et al. [SEAR18] is tight as there exists a matrix
such that RSVD fails to find a vector û such that

R(û) ≥ 23

24

with high probability within O(lnn) passes. We can summarize the status as follows.
Prior to our work, for any positive semidefinite matrices, the state-of-the-art results
shows that with probability at least 1− e−Ω(d),

q
o(lnn)-pass Ω(lnn)-pass

no guarantee R(û) = Ω(1)

Our contribution is that: we provide the analysis of RSVD with any number q of passes.
For any positive semidefinite matrice, with probability at least 1− e−Ω(d), we show

q
o(lnn)-pass Ω(lnn)-pass

R(û) = Ω

((
d
n

) 1
2q+1

)

We also provide a non-trivial guarantee for û found by RSVD for matric R(û) for
some indefinite matrices. Our technique is based on establishing a novel connection
between R(û) for û found by RSVD and the length of projecting any vector onto a
low-dimensional random subspace. Please refer to Section 2.2 for a brief introduction
to the random projection.
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Closing the Computational-Statistical Gap in Best Arm Identification for
Combinatorial Semi-Bandits (NeurIPS’23)

Here we focus on the combinatorial best arm identification with fixed confidence and
semi-bandit feedbacks. Before Paper C, there exist statistically optimal algorithms
such as CombGame [JMKK21], but there are no computationally efficient algorithms.

CombGame. CombGame interprets the optimization problem related to the expected
sample complexity lower bound as a two-player game with a ω-player and a λ-player:

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑

k=1

ωkd(µk, λk), (2.7)

where Σ = {∑x∈X wxx : w ∈ Σ|X |}, Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}, ΣN is
(N − 1)-dimensional simplex, and i⋆(·) ∈ argmaxx∈X ⟨·,x⟩.
An algorithm that computes the optimal solution,

λ⋆(ω,µ) ∈ argmin
λ∈cl(Alt(µ))

K∑

k=1

ωkd(µk, λk),

which is known as the most confusing parameter (MCP), to the inner optimization
Fµ(ω) in Equation (2.7) is called a MCP oracle, where cl (·) is the closure of the given
set. CombGame uses Frank-Wolfe algorithms, OFW [HK12] and LLOO [GH16], for
the ω player and uses a MCP oracle for the λ player.

This approach has many problems. First, Jourdan et al. [JMKK21] claim that the
sup inf of (2.7) can be swapped to inf sup by Sion’s minimax theorem, but, this is
incorrect since Alt(µ) is not a convex set. This would affect the correctness of their
analysis as it largely depends on their claimed saddle-point property of (2.11). Second,
Jourdan et al. [JMKK21] claim to have nonasymptotic sample complexity upper
bound, but it is in the implicit form which makes it hard to interpret the dependence
on problem-specific parameters such as the number K of arms. Third, they leave
the existence of the MCP oracle running in polynomial time as an open problem. All
the existing statistically optimal algorithms such as CombGame and FWS [WTP21]
require the MCP oracle. More precisely, the MCP oracle is used in their stopping rules
(known as the Chernoff stopping rule [GK16]) and their respective sampling rules.

One of the key contributions in Paper C is that we design an efficient approximate MCP
oracle based on a property we discovered while applying the Lagrangian multiplier
method (see Section 2.3). Then, based on the proposed approximate MCP oracle, we
design an algorithm that closes the computational-statistical gap of the problem of
combinatorial best arm identification with fixed confidence and semi-bandit feedbacks.

Matroid Semi-Bandits in Sublinear Time (ICML’24)

Before our Paper D, there is no sublinear-time algorithm for matroid semi-bandits.
The competitive algorithms for this setting include CUCB [CWY13], KL-OSM [TP16],
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and OSSB [CMP17]. Let X ⊆ {0, 1}K be the action set on K arms, and i⋆(µ) ∈
argmaxx∈X ⟨x,µ⟩ be an optimal action.

Combinatorial Upper Confidence Bound (CUCB). The sampling rule of CUCB is

x(t) ∈ argmax
x∈X

K∑

k=1

(
µ̂k(t− 1) +

√
1.5 log t

Nk(t− 1)

)
xk, (2.8)

where µ̂k(t) is the empirical mean estimate of arm k at round t, and Nk(t) is the
number of pulls of arm k at round t. CUCB achieves a regret bound R(T ) =

O
(

(K−D) log T
△min

)
that matches the gap-dependent lower bound, where △min =

minx∈X :△x>0△x and△x = ⟨i⋆(µ)− x,µ⟩.

KL-based Efficient Sampling for Matroids (KL-OSM). Under the assumption of
Bernoulli reward, KL-OSM at each round selects

x(t) ∈ argmax
x∈X

K∑

k=1

ωk(t)xk, (2.9)

where ωk(t) = max {q ∈ [µ̂k(t), 1] : Nk(t)kl(µ̂k(t), q) ≤ log t+ 3 log log t}. KL-OSM
achieves a regret bound that matches the instance-specific lower bound

lim inf
T→∞

R(T )

log T
≥

∑

k/∈supp(i⋆(µ))

µσ(k) − µk

kl(µk, µσ(k))
, (2.10)

where σ(k) = argmini∈Kk
µi and Ki = {ℓ ∈ supp (i⋆(µ)) : supp (i⋆(µ)) \{ℓ} ∪

{i} ∈ I}.

However, both algorithms, CUCB and KL-OSM, require per-round time complexity of
at least Ω(K). Their sampling rules (4.1) and (2.9) rely on a greedy algorithm (see
Section 2.5) to find a maximum-weight basis (2.2), so the time complexity is upper
bounded by O(K lnK) plus K membership oracle calls.

Optimal Sampling for Structured Bandits (OSSB). OSSB is an asymptotically
instance-specifically optimal algorithm. In each round, it solves the Graves-Lai
optimization problem [CCG21a], which has a simplified expression for the matroid
case, as shown on the right-hand side of Equation (2.10). The computational cost is
DK membership oracle calls.

Our contribution of Paper D is that we develop the first algorithm whose per-round
time complexity is sublinear in K.
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2.10 Discussion of the most important related works

Closing the Computational-Statistical Gap in Best Arm Identification for
Combinatorial Semi-Bandits (NeurIPS’23)

In this section, we present the most important works in best arm identification (BAI)
with fixed confidence. We start with the unstructured setting and then discuss the
state-of-the-art methods in the structured settings.

Track-and-Stop. In the unstructured setting, Track-and-Stop [GK16] is the
first work to achieve statistical optimality and computational efficiency. Its design
has inspired many subsequent works to design a statistically optimal algorithm for
other settings such as linear BAI [JP20], ϵ-BAI [GK21], and BAI with multiple correct
answers [DK19]. Here we summarize the ideas of Track-and-Stop.

Let Λ be the mean parameter space. Garivier and Kaufmann [GK16] derived the
expected sample complexity lower bound for the unstructured setting:

T ⋆(µ)−1 = sup
ω∈ΣK

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑

k=1

ωkd(µk, λk), (2.11)

where ΣK is the (K − 1)-dimensional simplex, Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}
is called the confusing parameters, and i⋆(µ) ∈ argmaxk∈[K] µk is the optimal arm.
Equation (2.11) is derived based on the so-called transportation lemma [KCG16].

The optimal solution to the inner optimization Fµ(ω) in Equation (2.11) is called the
most confusing parameter (MCP):

λ⋆(ω,µ) ∈ argmin
λ∈cl(Alt(µ))

K∑

k=1

ωkd(µk, λk).

The optimal solution to the optimization problem of T ⋆(µ)−1 is called the optimal
allocation:

ω⋆(µ) ∈ argmax
ω∈ΣK

Fµ(ω).

They showed that the optimal allocation ω⋆(µ) is unique and computable through the
binary search. Moreover, they presented a stopping rule called Chernoff stopping rule:
Let µ̂(t) be the empirical mean estimate and ω̂(t) be the empirical allocation. Then,

tFµ̂(t)(ω̂(t)) ≥ β(δ, t) =⇒ Pµ[i
⋆(µ̂(t)) ̸= i⋆(µ)] ≤ δ, (2.12)

where β(δ, t) is a exploration threshold.

The idea of Track-and-Stop is that: since ω⋆(µ) is unique, by forced exploration
procedure which uniformly explores all arms and by the law of large numbers, we have
ω⋆(µ̂(t)) → ω⋆(µ) almost surely as t → ∞. It remains to ensure ω̂(t) → ω⋆(µ)
almost surely as t→∞. The way that they ensure ω̂(t)→ ω⋆(µ) almost surely as
t→∞ is to use one of the following tracking rules:



Chapter 2. Background 20

• (C-Tracking) Pull

At+1 ←
K

argmax
k=1

(
t∑

s=1

ωϵs
k (µ̂(s))−Nk(t)

)
,

where ωϵ(µ) is a L∞ projection of ω⋆(µ) onto {ω ∈ [ϵ, 1]K :
∑K

k=1 ωk = 1}
and ϵs = 1

2
√
K2+s

.

• (D-Tracking) Pull

At+1 ←
K

argmax
k=1

(tω⋆
k(µ̂(t))−Nk(t)) .

Apart from Track-and-Stop, there are two other main frameworks in design-
ing statistically optimal algorithms for structured settings. One is the gamification
approach [DKM19] and the other is Frank-Wolfe Sampling (FWS) [WTP21].

Gamification. For the unstructured setting, Degenn et al. [DKM19] proposed the
gamification approach which interprets T ⋆(µ)−1 as a two-player zero-sum game:

T ⋆(µ)−1 = sup
ω∈ΣK

inf
λ∈Alt(µ)

K∑

k=1

ωkd(µk, λk) = inf
q

sup
k∈[K]

Eλ∼q[d(µk, λk)] ,

where q is a distribution over Alt(µ). This approach has several problems. First,
about why the second equality holds, Degenn et al. [DKM19] does not provide an
explanation. Note that the minimax theorem (see Section 2.4) which requires both
domains to be convex does not apply here since Alt(µ) is not a convex set. As far
as I know, only Qin and Russo [QR24] provide proof for the second equality in their
Theorem 5 by relating to Skeptic’s Standoff game. Second, this approach requires an
assumption on the set of mean parameters Λ ⊆ [µmin, µmax]

K that must be bounded
while other works such as Track-and-Stop [GK16] and FWS [WTP21] do not
impose such assumption. Third, The expected sample complexity of the gamification
approach is asymptotically optimal. However, their sample complexity upper bound is
not explicit in problem parameters such as K.

For the stopping rule, they use the Chernoff stopping rule (2.12). For the sampling
rule, they propose three schemes, but we limit our focus to the first two, which require
the MCP oracle. Here, a MCP oracle is an algorithm that computes Fµ(ω) in (2.11).
The two sampling rule schemes are as follows:

• ω-player plays the first and uses a regret minimization algorithm for linear losses
on the simplex to produce ω(t) ∈ ΣK . The λ-player uses the best-response
λ(t) ∈ infλ∈Alt(µ̂(t−1))

∑K
k=1 ωk(t)d(µ̂k(t− 1), λk). The computational cost

is dominated by one MCP oracle call.
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• λ-player plays the first and uses Follow-the-Perturbed-Leader which chooses a
distribution of

argmin
λ∈Alt(µ)

{
t−1∑

s=1

d(µ̂k(s)(s− 1), λk(s)) +

K∑

k=1

σk(t)d(µ̂k(t− 1), λk)

}
, (2.13)

where σ(t) is a random vector with i.i.d. exponentially distributed coordinates.
The ω-player plays the best-response k(t) ∈ argmaxk∈[K] Uk(t), where

Uk(t) = max

{
ln(t− 1)

Nk(t− 1)
, max
ξ∈{αk(t),βk(t)}

Eλ∼q(t)[d(ξ, λk)]

}

and [αk(t), βk(t)] = {ξ : Nk(t− 1)d(µ̂k(t− 1), ξ) ≤ ln(t− 1)}. λ-player
suffers loss Eλ∼q(t)

[
d(µ̂k(t− 1), λk(t))

]
. They showed in Appendix E.2 that

(2.13) can be computed by one MCP oracle call, but to estimate the distribution,
they use t empirical samples, so the computation cost is dominated by t MCP
oracle calls.

This approach has been extended to structured settings, such as linear [Sha21] and
combinatorial [JMKK21] settings.

Frank-Wolfe Sampling (FWS). FWS [WTP21] achieves instance-specifically statisti-
cal optimality in pure exploration tasks (e.g., best arm identification [GK16], threshold
bandits [LGC16]) under various structures (e.g., unimodal, Lipschitz, convex, linear).
Wang et al. [WTP21] provide the first expected sample complexity analysis in the
moderate-confidence regime and in the explicit form. Also, in empirical evaluation,
the average sample complexity of FWS is amongst the smallest of all the statistical
optimal algorithms in various structures.

The challenges in designing a generic algorithm lie in:

(i) Alt(µ) is not a convex set in general

(ii) Fµ is non-smooth

(iii) Fµ has an unbounded curvature close to the boundary of ΣK

To deal with the challenge (i), they assume that Alt(µ) can be partitioned into many
convex sets. Then, Fµ(ω) can be written as the minimum of many convex programs

Fµ(ω) = min
j∈Ji⋆(µ)

fj(ω,µ) and fj(ω,µ) = inf
λ∈Ci⋆(µ)

j

K∑

k=1

ωkd(µk, λk)

for j ∈ Ji⋆(µ) and Ci
⋆(µ)

j = {µ ∈ Λ : µj > µi⋆(µ)}.
For challenge (ii)(iii), observe that each fj(ω,µ) for each j ∈ Ji⋆(µ) is smooth, and
Fµ is nonsmooth only at the point where fj(ω,µ) = f ′j(ω,µ) for j ̸= j′. They
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replace the subdifferential at ω by taking the convex hull of gradients ∇fj(ω,µ)
satisfying fj(ω,µ) < Fµ(ω)+ r for some small r > 0. They propose a Frank-Wolfe-
based sampling rule, which we elaborate on the design here.

To overcome the challenge (ii), in addition to the standard Frank-Wolfe algorithm (see
Section 2.6), one can take the minimum of ⟨z − x(t− 1),h⟩ taken over all h in the
subdifferential of Fµ̂(t−1)(x(t− 1)):

{
z(t)← argmaxz∈ΣK

minh∈∂Fµ̂(t−1)(x(t−1)) ⟨z − x(t− 1),h⟩ ,
x(t)← t−1

t x(t− 1) + 1
t z(t),

where minh∈∂Fµ̂(t−1)(x(t−1)) ⟨z − x(t− 1),h⟩ is an approximate between the maxi-
mum and the current iterate. To cope with the nonsmoothness of Fµ, they construct
the r-subdifferential subspace:

HFµ(ω, r) = cov
{
∇fj(ω,µ) : j ∈ Ji⋆(µ), fj(ω,µ) < Fµ(ω) + r

}
,

and present the Frank-Wolfe sampling rule as follows:
{
z(t)← argmaxz∈ΣK

minh∈HFµ̂(t−1)
(x(t−1),rt) ⟨z − x(t− 1),h⟩ ,

x(t)← t−1
t x(t− 1) + 1

t z(t),

where∇fj(ω,µ) can be evaluated by the envelope theorem (see Section 2.7).

To overcome challenge (iii), they use forced exploration at rounds t such that
√
⌊t/K⌋ ∈

N, where K is the number of arms. That is, when
√
⌊t/K⌋ ∈ N holds, they set

z(t) = ( 1
K , · · · , 1

K ) as the center of the simplex ΣK regardless of the observation.
This makes the empirical allocation stay away from the boundary of the simplex ΣK .

The arm to be pulled is computed by the following tracking rule:

At ← argmax
k∈[K]

xk(t)

ω̂k(t− 1)
.

FWS also uses the Chernoff stopping rule (2.12) as the stopping rule.

However, FWS is not computationally efficient in combinatorial structure. Specifically,
it requires the MCP oracle not only in the Chernoff stopping rule (2.12) but also in the
construction of the r-subdifferential subspace HFµ̂(t−1)

(x(t− 1), rt). This motivates
our work on Paper C [TWPL23], where we develop an efficient MCP oracle and use a
different smoothing technique.
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Graph mining

In graph mining, we explicitly specify the kind of graph patterns we aim to find. This is
achieved by formulating the problem such that the objective function, given a solution,
reflects how well that solution matches the desired pattern. The algorithm typically
makes no assumptions about the graph, and performance evaluation is performed
using a worst-case analysis to approximate the optimal solution. The graphs used for
experiments are typically large and originate from real-world data.

In Paper A, we consider a specific signed graph mining task called conflicting
group detection. We proposed an approximation algorithm to efficiently solve the
problem. In Paper B, we consider top-eigenvector computation (which can be used to
detect many graph patterns) and sharpen the multiplicative analysis of Randomized
SVD [HMT11] in the pass-efficient and memory-efficient setting.

3.1 Discovering k-conflicting Groups in Signed Networks
(NeurIPS’20)

Summary

In Paper A, we consider the detection of a specific pattern in a signed network. The
pattern we aim to detect is called k-conflicting groups, which are k mutually-disjoint
node sets S1, . . . , Sk ⊆ V that have the following informally-stated properties:

Assumption 1. For all i, j ∈ [k], with i ̸= j, the edges in E(Si) are mostly positive,
whereas the edges in E(Si, Sj) are mostly negative.

Assumption 2. There should be a large number of interactions among the nodes of
S1, . . . , Sk relative to the total number of nodes in these groups. In other words, the
subgraph induced by S1, . . . , Sk should be as dense as possible.

To evaluate the quality of the k conflicting groups, we design the objective:

max
S1,··· ,Sk⊆V :
Si∩Sj=∅,∀i,j

∑
(i,j)∈E(Sh,Sh)

h=1,··· ,k
Ai,j − 1

k−1

∑
h̸=ℓ

∑
(i,j)∈E(Sh,Sℓ)

Ai,j

∑
h∈[k]|Sh|

. (3.1)

23
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The numerator of (3.1) accounts for Assumption 1 and the division by the total sizes
of the groups accounts for Assumption 2. This objective is a generalization of a
previous work that deals with the special case of k = 2 [BGG+19]. We observe that
the relationship among the k conflicting groups can be represented by the Laplacian
of complete graphs on k nodes. By leveraging the special eigenspace structure of the
Laplacian matrix of a complete graph (see Daniel A. Spielman’s lecture note [Dan19]),
we can rewrite the objective function (3.1) as

max
Y∈Rn×(k−1)\{0n×(k−1)}

Tr(YTAY)

Tr(YTY)
, (3.2)

subject to Yi,j =





cj(k − j) if i ∈ Sj

0 if i ∈ ∪j−1
h=1Sh or i /∈ ∪h∈[k]Sh

−cj if i ∈ ∪kh=j+1Sh

, where {cj}j∈[k−1]

are constants. Under the reformulation of (3.2), we extend the approach of [BGG+19]
to detect any k conflicting groups [TOG20] in a sequential manner: For any j ∈ [k],
suppose S1, · · · , Sj−1 are detected, and the j-th group is formed as Sj = {i ∈ [n] :
u⋆
i = k − j}, where u⋆ is the optimal solution to (3.3):

u⋆ ∈ argmax

{
xTA(j−1)x

xTx
: x ∈ {−1, 0, k − j}n\{0}

}
, (3.3)

A(j−1) is the adjacency matrix after removing ∪h∈[j−1]Sh, and A(0) = A. We refer
to the problem of (3.3) as Max-DRQ problem.

Challenge

Max-DRQ (3.3) is an APX-hard problem since a special case of k = 2 has been
shown to be APX-hard [BGG+19, BCMV12]. For k = 2, the eigenvector-based
rounding algorithm by [BGG+19] results in O(√n)-approximation factor and there is
an instance such that any eigenvector-based rounding algorithm suffers from a Ω(

√
n)-

approximation factor. The state-of-the-art is a O(n 1
3 lnn)-approximation SDP-based

rounding algorithm [BCMV12], based on the following SDP relaxation:

max
w1,··· ,wn

∑

i,j

Aij ⟨wi,wj⟩ subject to
∑

i

w2
i = 1 and |⟨wi,wj⟩| ≤ ∥wi∥22 ,∀i, j.

(2.6)
However, it is hard to generalize (2.6) to the case when k > 2.

Our approach

We proposed a O((k − j)√n)-approximation eigenvector-based rounding algorithm
called RandomRound to solve (3.3). Let q = k − j, where j goes from 1 to k − 1.
RandomRound rounds an eigenvector u ∈ Rn of A(k−q−1) onto {0,−1, q}n by
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drawing Bernoulli trials. For each coordinate uk, we set

ũk =

{
q · Bernoulli(|uk|/q) if uk ≥ 0

−1 · Bernoulli(|uk|) if uk < 0
,∀k = 1, · · · , n. (3.4)

In this way, we have E[ũ] = u. RandomRound generalizes [BGG+19], and has the
following theoretical guarantee:

Theorem 1. Let u be the leading eigenvector of the adjacency matrix A(k−q−1) of a
signed graph, and let q ≥ 1 be a positive integer. Then, the RandomRound algorithm
with (u, q) as input is a (q

√
n)-approximation to the optimum of the corresponding

Max-DRQ problem.

Lemma 1. Let OPT be the optimum solution to the Max-DRQ problem. There
exists a problem instance such that λ1(A) ≥ OPT · Ω(√n).
Corollary 1. The integrality gap of algorithm RandomRound is Ω(

√
n), and thus,

the approximation result of Theorem 1 is asymptotically tight up to a factor of q.

RandomRound performs competitively in both the real-world graphs and synthetic
networks as compared to the other baselines [CWP+16, CDGT19].

Contributions. A. Gionis and the author of the thesis contributed to the problem
formulation. The author of the thesis reformulated the problem and proposed the
algorithm. B. Ordozgoiti and the author established the analysis. The initial manuscript
was primarily written by the author of the thesis and B. Ordozgoiti, with A. Gionis
contributed to subsequent revisions.

3.2 Improved Analysis of Randomized SVD for Top-Eigenvector
Approximation (AISTATS’22)

Summary

In Paper B, we study graph mining tasks that can be described as a Rayleigh quo-
tient maximization problem, shown in (3.5), in a pass-efficient and memory-efficient
manner.

x⋆ ∈ argmax

{
xTAx

xTx
: x ∈ T \{0}

}
(3.5)

for some given T ⊆ Rn and some given symmetric matrix A ⊆ Rn×n. Many
graph mining tasks, such as fair densest subgraph detection [ABF+20], 2-community
detection [New06], conflicting group detection [BGG+19, TOG20] are captured by the
formulation of (3.5). A computationally efficient way to solve (3.5) is to (i) compute
the top-eigenvector û of A by eigenvector solver and then (ii) round û to another
vector in T . For step (i), randomized SVD (RSVD) [HMT11] is a memory-efficient
and pass-efficient method. However, in the o(log n)-pass regime which is of great
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interest to practitioners, we find that RSVD has no guarantee for the top-eigenvector
approximation with respect to the multiplicative ratio objective:

R(û) = λ−1
1

ûTAû

ûT û
,

where λ1 is the eigenvalue of the top eigenvector of A. First, the ratio objective R(û)
provides a finer analysis of the eigenvector-based algorithm. For example, we show in
Paper B that: given an approximated top-eigenvector û, Random-Eigensign for
2-conflicting group detection (see Section 2.9) is a O(

√
n

R(û) )-approximation algorithm.
Second, it raises a natural question: whether Ω(log n)-pass is necessary for RSVD to
output an approximate top-eigenvector û with a non-trivial guarantee of R(û)? We
answer this question by sharpening the analysis of RSVD such that it outputs û with a
non-trivial guarantee of R(û) on positive semi-definite matrices for any number of
passes. This result is extended to indefinite matrices under certain conditions. More-
over, we considered a variant of RSVD, which is referred to as RandSum, that uses
Johnson-Linderstrauss (JL) distribution and a 0/1-Bernoulli in the random projection
step. We demonstrate by experiment that RandSum is helpful to the detection of
conflicting groups ([BGG+19] and Paper A) in the sense that the number of passes
required to achieve certain performance by RandSum is less than that is required by
RSVD.

Challenge

Prior work analyzes the top eigenvector approximation in the additive form. Musco
and Musco [MM15] showed that RSVD using O(nd) space and q passes results in
R(û) ≥ 1 − O( lnn

q ) with probability at least 1 − n−Ω(d). This analysis shown by
Simchowitz et al. [SEAR18] is tight as there exists a matrix such that RSVD fails to
find a vector û such that R(û) ≥ 23

24 within O(lnn) passes. It is unclear whether
q = Ω(lnn) passes are required for RSVD to output a top-eigenvector approximation
û such that the multiplicative gap R(û) has a non-trivial guarantee.

Our approach

We avoid using any derivation that will result in an additive form of R(û). These
include matrix addition and subtraction. Our approach uses only Cauchy-Schwarz
inequalities to relate R(û) with random projection lemma [HP14]. For positive semi-
definite matrices, we have the following results:

Theorem 1. Let A be a PSD matrix with λ1 > 0 and û = RSVD(A,N (0, 1)n×d, q, d)
for any q ∈ N. Then

R(û) =

(
Ω

(
d

n

)) 1
2q+1

holds with probability at least 1− e−Ω(d).
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One may wonder whether this analysis is tight, and we show that it is tight up to a
constant factor by considering the eigenvalue distribution {αi}:

1 = α1 > α2 = · · · = αn =

(
d

n

) 1
2q+1

,

where αi = λi/λ1.

Theorem 2. For any q ∈ N, there exists a positive semidefinite matrix A with
λ1 > 0, so that for û = RSVD(A,N (0, 1)n×d, q, d), it holds

R(û) = O
((

d

n

) 1
2q+1

)
,

with probability at least 1− e−Ω(d).

While our worst-case analysis is tight, the bad eigenvalue distributions rarely happen
in practice. Instead, real-world matrices are often observed to have rapidly decaying
singular values [CF06, EG17]. To take this consideration into account, we introduce
the following definition to capture whether A has at least a power-law decay of its
singular values {σi}ni≥i0

.

Definition 1. Let

i0 =

{
minj∈J j if J ̸= ∅,
n otherwise,

where J ⊆ [n] consists of all the integers j ∈ [n] such that there exists γ > 1/q and
C > 0 satisfying σi/σ1 ≤ C · i−γ , for all i ≥ j.
Theorem 3. Let A be a positive semidefinite matrix, û = RSVD(A,N (0, 1)n×d, q, d)
for any q ∈ N, and i0 be defined as in Definition 1. Then

R(û) = Ω

((
d

d+ i0

) 1
2q+1

)

holds with probability at least 1− e−Ω(d).

If A has negative eigenvalues, we expect to have a guarantee of R(û) similar to that
of Theorem 3 if the negative eigenvalues are not too large. We introduce the following
technical assumption and generalize Theorem 3 to indefinite matrices. Let λi and ui

be the i-th largest eigenvalue and the corresponding eigenvector.

Theorem 4. Assume there exists a constant κ ∈ (0, 1] such that
∑n

i=2 λ
2q+1
i ≥

κ
∑n

i=2|λi|2q+1. Let û = RSVD(A,N (0, 1)n×d, q, d) for any q ∈ N. Then, there is
a constant cκ ∈ (0, 1] that depends on κ such that

R(û) = Ω

(
cκ

(
d

d+ i0

) 1
2q+1

)
,
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with probability at least 1− e−Ω(
√
dκ2).

Moreover, we consider an extension of RSVD by replacing the random projection
matrix S ∼ N (0, 1)n×d with S = [S1,S2], where S1 ∼ N (0, 1)n×⌈ d

2 ⌉ and S2 ∼
Bernoulli(p)n×⌊ d

2 ⌋. This algorithm is called RandSum, and we show that it has the
following guarantees:

Theorem 5. Let A be a positive semindefinite matrix with λ1 > 0, and û =
RandSum(A, q, d, p) for any constant p ∈ (0, 1) and integer d ≥ 2. Then,

R(û) =

(
Ω

(
max{d, ⟨u1,1n⟩2}

n

)) 1
2q+1

holds with probability at least 1− e−Ω(d).

Theorem 6. Assume (i) there exists a constant κ ∈ (0, 1] such that
∑n

i=2 λ
2q+1
i ≥

κ
∑n

i=2|λi|2q+1; (ii) ⟨u1,1n⟩2 = Ω(1); (iii) there exists a constant κ′ ∈ (0, 1] such

that
∑n

i=2 λ
2q+1
i ξi ≥ κ′

∑n
i=2|λi|2q+1ξi, where ξi = E

[〈
STui,

1d√
d

〉2]
, for all

i ∈ [n]. Then,

R(û) = Ω

((
max

{
d

d+ i0
,
⟨u1,1n⟩2

n

}) 1
2q+1

)

holds with probability at least 1− e−Ω(
√
d).

While such a random matrix is rarely used in the literature of random projections,
we show that there exist applications such as conflicting group detection [BGG+19,
TOG20] that are especially suitable for this technique. Several properties of such a
random matrix that we derived in the paper may be of independent interest.

Contributions. C.-J. Lu and the author of the thesis contributed to the problem
formulation and the theoretical analysis. The initial manuscript was written by the
author of the thesis, with P.-A. Wang, A. Gionis, and F. Adriaens contributing to
subsequent revisions.



Chapter 4

Combinatorial multi-armed bandits

In this thesis, Paper C focuses on (ii) pure exploration (a) with fixed confidence, and
Paper D focuses on (i) regret minimization. In all of these papers, we consider the
stochastic environment and linear reward function and aim for an algorithm that is
both statistically efficient and computationally efficient. In Paper C, we consider an
open problem in combinatorial best arm identification with semi-bandit feedback: "Is
it possible to design an algorithm that is both statistically optimal and runs in time
polynomial in problem-specific parameters?". We answer the question affirmatively by
providing an algorithm that achieves statistical optimality and computational efficiency.
In Paper D, we consider matroid semi-bandits in the regret minimization setting and
propose the first algorithm that runs in time sublinear in the number of arms for
common classes of matroids.

4.1 Closing the Computational-Statistical Gap in Best Arm
Identification for Combinatorial Semi-Bandits (NeurIPS’23)

Summary

In Paper C, we confirm the conjecture left by Jourda et al. [JMKK21] that there is
no computational-statistical gap in best arm identification in stochastic combinatorial
semi-bandits with fixed-confidence for uncorrelated Gaussian rewards. Stochastic
combinatorial semi-bandits is an online learning problem where, at each round, the
learner pulls an action that is a subset of arms satisfying certain combinatorial con-
straints (e.g.,m-sets, spanning trees, and matchings) and observes noisy rewards for all
the arms contained in the selected action. The objective of best arm identification with
fixed confidence is to identify the best action with a given confidence level while using
as few samples as possible. Our proposed method, Perturbed-FWS, addresses
the computational inefficiency of the FWS method [WTP21] (see Section 2.10). Our
main contribution is the proposal of a computationally efficient MCP algorithm for
solving the inner optimization associated with the sample complexity lower bound
problem [GK16]. For the outer optimization of the lower bound problem, we replace

29
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the smoothing technique of FWS, which constructs a space spanned by potentially
O(2K) gradient vectors (where K is the number of arms), with the standard stochastic
smoothing technique [DBW12]. As a result, all Perturbed-FWS needs is a linear
maximization oracle, making it the first optimal algorithm that runs in time polynomial
in K.

Challenge

For combinatorial best arm identification with uncorrelated Gaussian rewards, we have
the sample complexity lower bound Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ). We call T ⋆(µ)−1

the lower-bound problem which is defined as

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
,

where Σ = {∑x∈X wxx : w ∈ Σ|X |}, kl(a, b) is the KL-divergence between two
Bernoulli distributions with respective means a and b, and Alt(µ) = {λ ∈ Λ :
i⋆(λ) ̸= i⋆(µ)} is the set of confusing parameters, and i⋆(·) ∈ argmaxx∈X ⟨x, ·⟩
is a linear maximization (LM) oracle. For pure exploration in structured bandits, the
existing statistical optimal algorithms [WTP21, JMKK21] which are designed based
on solving T ⋆(µ)−1 with µ plugged-in with the empirical estimated mean µ̂(t− 1).
For the setting we consider, the computational challenge comes from Fµ(ω) because
a naïve way of solving Fµ = minx̸=i⋆(µ) fx(ω,µ) has to solve |X | − 1 many convex

programs fx(ω,µ) = infλ:⟨x−i⋆(µ),λ⟩>0

〈
ω, (µ−λ)2

2

〉
, and |X |might be exponential

in the number K of arms.

Our approach

We address this computational challenge by proposing an efficient no-regret algo-
rithm, referred to as MCP algorithm, for computing Fµ(ω). The design of the MCP
algorithm is based on the observation that the Lagrangian dual function gω,µ(x, α) of
fx(ω,µ) is linear in the action x and concave in the Lagrangian multiplier α (shown
in Proposition 1), and hence we rewrite

Fµ(ω) = min
x ̸=i⋆(µ)

max
α≥0

gω,µ(x, α).

Please refer to Section 2.3 for an introduction to the Lagrangian multiplier method.

Assumption 1. (i) There exists a polynomial-time algorithm identifying i⋆(v) for
any v ∈ RK ; (ii) X is inclusion-wise maximal, i.e., there is no x,x′ ∈ X s.t. x < x′;
(iii) for each k ∈ [K], there exists x ∈ X such that xk = 1; (iv) |X | ≥ 2.

Proposition 1. Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆(µ)}.
(a) The Lagrange dual function is linear in x. More precisely,

gω,µ(x, α) = cω,µ(α) + ⟨ℓω,µ(α),x⟩ ,
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where cω,µ(α) = α
〈
µ− α

2ω
−1, i⋆(µ)

〉
and ℓω,µ(α) = −α

(
µ+ α

2ω
−1 ⊙ (1K − 2i⋆(µ))

)
.

(b) gω,µ(x, ·) is strictly concave (for any fixed x).
(c) fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆

x = △x(µ)
⟨x⊕i⋆(µ),ω−1⟩ .

(d) ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞.

But, different from the literature of the two-player game, we not only want to estimate
Fµ but also want the equilibrium action xe such that Fµ(ω) = fxe(ω,µ). We need
xe because we would like to solve the outer optimization supω∈Σ Fµ(ω) by first-
order methods and xe is required to compute the subgradients. Hence, we design MCP
algorithm from scratch shown in Algorithm 1:

Algorithm 1: (ϵ, θ)-MCP(ω,µ)

initialization: n = 1, F̂ =∞,
cθ = Lω,µ

(
4
√
K(lnK + 1) +

√
ln(θ−1)/2

)
;

while (n = 1) or (n > 1 and
√
n ≤ cθ(1 + ϵ)/(ϵF̂ )) do

Sample Zn ∼ exp(1)K and set ηn =
√
K(lnK + 1)/(4nL2

ω,µ);

x(n) ← argminx̸=i⋆(µ)

(∑n−1
m=1 gω,µ(x, α

(m)) + ⟨Zn,x⟩ /ηn
)

;

α(n) ← argmaxα≥0 gω,µ(x
(n), α);

if gω,µ(x
(n), α(n)) < F̂ then (F̂ , x̂)← (gω,µ(x

(n), α(n)),x(n)) ;
n← n+ 1;

end
return (F̂ , x̂);

To be able to estimate Fµ and the equilibrium action xe simultaneously, in our MCP
algorithm, we let the x-player use follow-the-perturbed-leader (FTPL) rule, and let
the α-player use the best-response rule. The stopping criterion of MCP algorithm is
designed such that when the criterion is met, the estimated (F̂ , x̂) is a good approx-
imation to (Fµ(ω),xe) with high probability. Our result of MCP is summarized as
follows:

Theorem 1. Let ϵ, θ ∈ (0, 1). Under Assumption 1, for any (ω,µ) ∈ Σ+ × Λ, the
(ϵ, θ)-MCP(ω,µ) algorithm outputs (F̂ , x̂) satisfying

P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1− θ and F̂ = max

α≥0
gω,µ(x̂, α).

Moreover, the number of LM Oracle calls the algorithm does is almost surely at most

⌈
c2θ(1 + ϵ)2

ϵ2Fµ(ω)2

⌉
= O

(
∥µ∥4∞

∥∥ω−1
∥∥2
∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)
.

Based on MCP algorithm, we design Perturbed-FWS which is the first statistically
optimal and computationally efficient algorithm for combinatorial best arm identi-
fication with fixed-confidence and semi-bandit feedback for uncorrelated Gaussian
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rewards. The sample complexity of Perturbed-FWS is instance-specifically op-
timal in the high-confidence regime and has a polynomial dependency in K in the
moderate-confidence regime.

Theorem 2. For any δ ∈ (0, 1), P-FWS is δ-PAC, and for any (ϵ, ϵ̃) ∈ (0, 1) small
enough, its sample complexity satisfies:

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ ×H
(
1

δ
· c(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = ln(x) + lnln(x), c > 0 is a universal constant, and Ψ(ϵ, ϵ̃) is polyno-
mial in ϵ−1, ϵ̃−1, K, ∥µ∥∞, and △−1

min, where △min = minx ̸=i⋆(µ)⟨i⋆(µ) − x,µ⟩.
Under P-FWS, the number of LM Oracle calls per round is at most polynomial in
ln δ−1 and K. The total expected number of these calls is also polynomial.

Contributions. P.-A. Wang contributed to the problem formulation. C.-J. Lu, P.
Wang, and the author of the thesis contributed to the algorithm design and theoretical
analysis. The initial manuscript was written by the author of the thesis, with A.
Proutiere, C.-J. Lu, and P.-A. Wang contributed to subsequent revisions.

4.2 Matroid Semi-Bandits in Sublinear Time (ICML’24)

Summary

In Paper D, we study matroid semi-bandits: given [K] = {1, · · · ,K} arms with
unknown mean µ ∈ (0, 1)K and the set X of the bases of a given matroid, the goal is
to identify a best action i⋆(µ) ∈ argmaxx∈X ⟨x,µ⟩ while minimizing the expected
cumulative regret. Existing works such as CUCB [CWY13] and KL-OSM [TP16] have
a per-round time complexity of at least Ω(K) which is inefficient when K is large.
To address this issue, we propose FasterCUCB whose per-round time complexity
is sublinear in K for common classes of matroids: O(D polylog (K,T )) for uniform
matroid, partition matroid, and graphical matroid, and O(D

√
K polylog (T )) for

transversal matroid, where D is the rank of the matroid and T is the horizon. Our
technique is based on dynamic maintenance of an approximate maximum-weight basis
over inner-product weights. Although the introduction of an approximate maximum-
weight basis presents a challenge in regret analysis, we can still guarantee an upper
bound on regret as tight as CUCB in the sense that it matches the gap-dependent lower
bound by Kveton et al. [KWA+14] asymptotically.

Challenge

There is no known prior work whose per-round time complexity is sublinear in K.
Also, the challenge to speed up CUCB, whose sampling rule is shown in (4.1), is that
every arm’s weight changes at each round.

x(t) ∈ argmax
x∈X

K∑

k=1

⟨fk, q⟩xk, (4.1)
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where f = (µ̂k(t − 1), 1√
Nk(t−1)

) is a pair of the empirical mean estimate and the

radius of the confidence interval, and q = (1, λt) is a pair of 1 and the parameter that
controls the confidence interval.

Our approach

Observe that when q is fixed, then there are only D arms in (4.1) that will change after
each round. In this way, we can use a dynamic algorithm that supports fast arm weight
change and fast computation of the maximum-weight base. So, the key question is
how can we implement as if q is fixed? Our idea is to construct a minimum hitting set
H which has the property that: for any q ∈ R2

+, there exists h ∈ H such that

⟨fk,h⟩ > ⟨fℓ,h⟩ =⇒ ⟨fk, q⟩ > ⟨fℓ, q⟩

for any k ̸= ℓ. What this means is that when replacing ⟨fk, q⟩ with ⟨fk,h⟩, the greedy
algorithm will output the same solution. However, this naive solution will require
|H| = O(K2). We overcome this issue by rounding. Specifically, we put the K
arms into polylog (T ) bins and use one point called dominating point to present each
bin. The minimum hitting set is constructed using those dominating points, and for
each h ∈ H, we create a dynamic algorithm with arm’s weight ⟨dom(fk),h⟩, where
dom(fk) denotes the dominating point of fk. When an arm’s feature has to change, we
need to change the weights stored in all the dynamic algorithms of each h ∈ H. So, the
procedure of our FasterCUCB is that we compute (4.1) by first finding the h ∈ H
that preserves the pairwise ordering with respect to q, and then calling its dynamic
algorithm to output a maximum-weight base. Then, after receiving the semi-bandit
feedbacks, we update the corresponding arms’ weight in all the dynamic algorithms of
each h ∈ H. The procedures are summarized as follows:

INITIALIZE: Given lower and upper bounds [αlb, αub] and [βlb, βub], K features
(αk, βk)k∈[K], a matroidM = ([K], I), a dynamic algorithm A for maximum-
weight base maintenance, and a precision parameter ϵ, this procedure initializes
the data structure used in the remaining two procedures.

FIND-BASE: Given a query q, this procedure is supposed to return a (1 + ϵ)-
approximate maximum-weight base ofM, where arm k’s weight is defined as
⟨fk, q⟩ for the up-to-date k’s feature fk.

UPDATE-FEATURE: Given an arm k and a new feature f ′
k, this procedure reflects

the change of arm k’s feature on the data structure.

Theorem 1. There exist implementations of INITIALIZE, FIND-BASE, and UPDATE-
FEATURE such that the following are satisfied: FIND-BASE always returns a (1 + ϵ)-
approximate maximum-weight base of a matroidM with arm k’s weight defined as
⟨fk, q⟩ for an up-to-date k’s feature fk and a query q. Moreover, INITIALIZE runs
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in O(K + poly (W ) · Tinit(A; ϵ
3 )) time, FIND-BASE runs in O(poly (W ) +D) time,

and UPDATE-FEATURE runs in O(poly (W ) · Tupdate(A; ϵ
3 )) time, where

W = O
(
ϵ−1 · log

(
αub

αlb
· βub

βlb

))
. (4.2)

Since W = O
(
logm T log

(
b
a

√
T
))

= O
(
logm+1 T

)
, the per-round time com-

plexity of FasterCUCB is O
(
D polylog (T ) Tupdate

(
A; ϵ

3

))
. Here, we will set

ϵ = 1
logm T for the regret analysis.

Theorem 2. Let λt =
√
1.5(b− a)2 log t andm ∈ N. Define T0 ≜ max{K, exp(( b

△min
)

1
m )}.

For T ∈ N, the expected regret of FasterCUCB is upper bounded by

R(T ) ≤
∑

k/∈supp(i⋆)




dk∑

j=1

△j,kT0 +
12△dk,k

(b− a)2 log T
(

µdk

1+log−m T
− µk

)2




+
∑

k/∈supp(i⋆)

dk∑

j=1

△j,k

(
1

T
+
π2

6

)
+DbT0,

where {j}Dj=1 be the permutation of supp (i⋆) such that µ1 ≥ · · · ≥ µD, △j,k ≜
µj − µk and dk ≜ max{j ∈ [D] : △j,k > 0} for j ∈ supp (i⋆) and k /∈ supp (i⋆),
and△min ≜ mink/∈supp(i⋆)△dk,k

.

As a consequence of Theorem 2, setting T →∞ yields:

lim
T→∞

R(T )

log T
≤

∑

k/∈supp(i⋆)

12(b− a)2
△dk,k

≤ O
(
K −D
△min

)
,

which matches Theorem 4 in [KWA+14], lim infT→∞
R(T )
log T = Ω(K−D

△min
), asymptot-

ically up to a constant factor. Note that FasterCUCB is faster than CUCB when
△min = Ω( 1

polylog(K) ) and when T = poly (K). Also, similar to [CCG21b], our
per-round time complexity also goes to infinity as T →∞, one way to address this
issue is to use CUCB when the per-round time complexity of ours is larger than that of
CUCB.

Contributions. The author of the thesis contributed to the problem formulation. N.
Ohsaka contributed to the algorithm design. N. Ohsaka and the author of the thesis
contributed to the theoretical analysis. The initial manuscript was written by N. Ohsaka
and the author of the thesis, with K. Ariu contributing to subsequent revisions.
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Challenges and open problems

5.1 Some technical challenges

Challenges in performing tight analysis

Challenges in pass-efficient analysis and 0/1-Bernoulli random projection

In Paper B, we focus on eigensolvers with O(nd) space and q passes over a input
matrix A ∈ Rn×n. Suppose the algorithm outputs û ∈ Sn−1 in q passes. The
performance is measured against the multiplicative ratio:

R(û) =
ûTAû

λ1
,

where λ1 is the largest eigenvalue of A. Deriving a tight upper bound ofR(û) satisfied
by any algorithm using O(nd) space and q passes over A is an open problem. See
Table 5.1.

Table 5.1: Multiplicative ratio R(û) for any algorithm.

R(û) Lower Bound Upper Bound

Positive semidefnite matrices
O(nd) space and q passes

Ω
((

d
n

) 1
2q+1

)
by Randomized SVD

Paper B [TWA+22]
open

Furthermore, we proposed a variant of RSVD called RandSum which uses 0/1-
Bernoulli with Gaussian distribution in the random projection step. It is challenging
to derive a tight analysis of the 0/1-Bernoulli random projection due to the lack of
appropriate tools in probability theory. This is because the 0/1-Bernoulli distribution
is not uniformly distributed with respect to the Haar measure on the Grassmannian
of all log n-dimensional subspaces of Rn, which is a crucial property satisfied by all
Johnson-Lindenstrauss (JL) distributions, so the existing results on the JL distributions
do not apply to the 0/1-Bernoulli random projection.

35
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Challenges in designing statistically optimal and computationally efficient
algorithms for combinatorial multi-armed bandit problem.

There generally exists computational-statistical gaps in combinatorial multi-armed
bandits for the (a) regret minimization problem and for the (b) best arm identification
problem with fixed confidence. See Table 5.2 for a summary of the current progress.
We say a problem has a computational-statistical gap if there exist statistically optimal
algorithms for the problem, but no computationally efficient implementations. In prob-
lems (a) and (b), a statistically optimal algorithms [CMP17, GK16, WTP21, JMKK21]
is designed from the insights gained from the regret lower bound [CTMSP+15] or
sample complexity lower bound [GK16]. A regret or sample complexity lower bound
is characterized by an optimization problem, and a statistically optimal algorithm
consists of a subprocedure for solving the lower bound optimization problem. How-
ever, in combinatorial multi-armed bandits, solving the lower bound problem is often
computationally challenging. In the following, we list the lower bound problem for the
(a) regret minimization and for the (b) best arm identification with fixed confidence.

Table 5.2: Computational-statistical gap in combinatorial semi-bandits.

Reward Distribution Statistical Optimality
Computational Efficiency
& Statistical Optimality

Combinatorial BAI
(semi-bandit)

Gaussian [JMKK21, WTP21] Paper C [TWPL23]
Bernoulli open

Combinatorial BAI
(full-bandit)

Gaussian [WTP21] openBernoulli
Combinatorial Regret

Minimization
Gaussian [CMP17] openBernoulli

Challenges in solving the regret lower bound problem

The regret lower bound [CTMSP+15] is characterized by the Graves-Lai optimization
problem:

min
a∈R|X|

+

∑

x∈X
ax ⟨i⋆(µ)− x,µ⟩

subject to
∑

x∈X
ax

∑

k∈supp(x)

d(µk, λk) ≥ 1,∀λ ∈ Λ, (5.1)

where Λ = {λ ∈ RK : |i⋆(λ)| = 1, i⋆(λ) ̸= i⋆(µ) , λk = µk,∀k ∈ supp (i⋆(µ))},
i⋆(·) ∈ argmaxx∈X ⟨·,x⟩, and d(a, b) is the KL divergence of the two distributions
parameterized under a and b. OSSB [CMP17] is a statistically optimal algorithm that
requires solving (5.1) each round with µ replaced with the empirical mean estimates,
but the authors did not propose an efficient procedure to solve (5.1). [CCG21a] aims
to address this computational issue for OSSB by proposing a subprocedure called
GLPG that performs proximal gradient descent for solving (5.1). GLPG requires a
subprocedure for solving a budgeted linear maximization (BLM) problem:

max
x∈X
⟨a,x⟩ subject to ⟨b,x⟩ ≥ s. (5.2)
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There exists an exact BLM algorithm for m-sets and source-destination paths, but
for spanning trees and matchings, only approximate BLM algorithms exist. As a
consequence, the approach by Cuvelier et al. [CCG21a] managed to maintain sta-
tistical optimality only for m-sets and source-destination paths, and under uncor-
related Gaussian reward distributions. How to design an algorithm that closes the
computational-statistical gap for combinatorial regret minimization for common com-
binatorial structures (including m-sets, spanning trees, and matchings) is an open
problem.

Challenges in solving the sample complexity lower bound problem

The sample complexity lower bound [JMKK21] for best arm identification with fixed
confidence for combinatorial semi-bandits which can be derived by change-of-measure
technique [KCG16] is characterized by T ⋆(µ) defined as:

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑

k=1

ωkd(µk, λk), (2.7)

where Σ = {∑x∈X wxx : w ∈ Σ|X |}, and Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}.

There exist statistically optimal algorithms such as FWS [WTP21] and CombGame
[JMKK21] that are designed based on solving (2.7) at each round with µ and ω re-
placed with the empirical estimates of the mean and the arm allocations. However, the
authors of FWS and CombGame did not propose a computationally efficient procedure
for solving (2.7). The challenge of solving (2.7) comes from the evaluation of Fµ(ω)
because Alt(µ) is a convex union of a potentially O

(
2K
)

many convex set. In other
words, one may need to solve O

(
2K
)

many convex programs to evaluate Fµ(ω),
which is not computationally efficient.

In Paper C, we proposed an efficient procedure for evaluating Fµ(ω) on common
combinatorial structures for uncorrelated Gaussian rewards, and use such procedure to
design a statistically optimal and computationally efficient algorithm called P-FWS.
The efficiency of such a procedure for evaluating Fµ relies on the property of KL
divergence of the uncorrelated Gaussian rewards, and unfortunately does not generalize
to other distributions. So, how to design an algorithm that closes the computational-
statistical gap for combinatorial best arm identification with semi-bandit feedback and
reward distributions other than uncorrelated Gaussian is an open problem.

Moreover, beyond semi-bandits, statistically optimal algorithms exist [WTP21] for
best arm identification with full-bandit feedback and also for linear best arm identifica-
tion, but none are computationally efficient. It remains an open problem to design a
statistically optimal and computationally efficient algorithm for these problems.
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5.2 Open problems left in the included papers

Discovering k-conflicting Groups in Signed Networks (NeurIPS’20)

Several questions are left by this work. (i) It remains open whether we can improve
the O((k − j)√n)-approximation for (3.3) using an approach that does not rely on
rounding the leading eigenvector, such as by extending the SDP-based algorithm in
[BCMV12]; (ii) The modified Stochastic Block Model (m-SSBM) is a special case of
Label Stochastic Block Model (LSBM) [HLM12]. It would be relevant to analyze the
recovery guarantee of our proposed method in m-SSBM concerning the fundamental
limit results [YP16] and the interplay with the Bethe-Hessian operator [SKZ14] in the
sparse regime; (iii) The difference in the empirical performance of our two rounding
techniques and the spectral clustering baseline SPONGE [CDGT19] in the real-world
networks and the synthetic network is somewhat striking. Some properties or structures
may exist in the real-world networks but not in the synthetic networks. An interesting
question is to explain this behavior analytically, in particular concerning properties of
real-world networks.

Improved Analysis of Randomized SVD for Top-Eigenvector
Approximation (AISTATS’22)

Several questions are left by this work. (i) It is an open problem to characterize the
fundamental limit of maximizing R(û) for any algorithm with fixed number of pass
andO(n log n) space; (ii) Our results may be extended in different ways. For example,
we may relax the requirement on the input matrix from symmetric to stochastic, to
analyze approximations of PageRank [PBMW99]. Or, we may extend RandSum to
use any non-centered subgaussian distribution combined with JL distribution, and we
conjecture this yields similar results. (iii) Another direction is to extend our analysis
to top-k eigenvectors; since there are already several methods for computing top-k
eigenvectors [HMT11, Mac08, AZL16], the most challenging part is to define the
proper metric to maximize, as a generalization of R(û).

Closing the Computational-Statistical Gap in Best Arm Identification for
Combinatorial Semi-Bandits (NeurIPS’23)

(i) In this work, we design an efficient algorithm for computing Fµ by exploiting the
property of the KL divergence of the Gaussian distribution. For Bernoulli distribution,
whether one can design an efficient algorithm for computing Fµ is an open problem;
(ii) We have studied the computational-statistical trade-off through the analysis of the
optimization problem leading to instance-specific sample complexity lower bounds.
This approach can be extended to study the computational-statistical gap in other learn-
ing tasks, such as combinatorial bandits with bandit feedback [KHS20], linear bandits
[DMSV20, JP20], and RL in linear or low-rank MDPs [AKKS20]). Most results on
these problems are concerned with statistical efficiency and ignore computational
issues.
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Matroid Semi-Bandits in Sublinear Time (ICML’24)

There are many semi-bandit algorithms. In this work, we have accelerated the CUCB
algorithm to match the gap-dependent regret lower bound. However, for the KL-OSM
algorithm, which matches the instance-specific lower bound, it is currently unknown
how to convert it into a sublinear-time algorithm. Similarly, for UCB-based algorithms
such as LinUCB [LCLS10] in the full-bandit feedback, determining how to convert
them into sublinear-time algorithms remains an open problem.
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Appendix A

Discovering k-conflicting groups in
signed networks

A

Figure: Two groups of cats fighting each other.

We study the problem of k-conflicting group detection in signed networks, where
conflicting groups are node subsets such that inter-group edges are mostly negative
while intra-group edges are mostly positive. We derive a formulation of the problem
such that each conflicting group is naturally characterized by the maximum discrete
Rayleigh’s quotient (MAX-DRQ) problem, and present an eigenvector-based algorithm
with provable guarantee to the MAX-DRQ problem.
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Abstract
Signed networks are graphs where edges are annotated with a positive or negative
sign, indicating whether an edge interaction is friendly or antagonistic. Signed net-
works can be used to study a variety of social phenomena, such as mining polarized
discussions in social media, or modeling relations of trust and distrust in online
review platforms. In this paper we study the problem of detecting k conflicting
groups in a signed network. Our premise is that each group is positively connected
internally and negatively connected with the other k − 1 groups. A distinguishing
aspect of our formulation is that we are not searching for a complete partition of the
signed network; instead, we allow a subset of nodes to be neutral with respect to the
conflict structure we are searching. As a result, the problem we tackle differs from
previously-studied problems, such as correlation clustering and k-way partitioning.
To solve the conflicting-group discovery problem, we derive a novel formulation
in which each conflicting group is naturally characterized by the solution to the
maximum discrete Rayleigh’s quotient (MAX-DRQ) problem. We present two spec-
tral methods for finding approximate solutions to the MAX-DRQ problem, which
we analyze theoretically. Our experimental evaluation shows that, compared to
state-of-the-art baselines, our methods find solutions of higher quality, are faster,
and recover ground-truth conflicting groups with higher accuracy.

1 Introduction

Signed networks are graphs where each edge is labeled either positive or negative. The introduction
of edge signs, which goes back to the 50’s, was motivated by the study of friendly and antagonistic
social relationships [22]. The representation power of signed networks comes at the cost of significant
differences in fundamental graph properties, and thus, algorithmic techniques employed to analyze
unsigned networks are usually not directly applicable to their signed counterparts. These differences
have spurred significant interest in a variety of analysis tasks in signed networks [20, 36] such
as signed network embeddings [7, 24, 25, 39], signed clustering [8, 14, 27, 32], and signed link
prediction [9, 28, 38, 41] in recent years.

In this paper we study the problem of detecting k conflicting groups in signed networks. In more
detail, we are interested in finding a collection of k vertex subsets, each of which is positively con-
nected internally, and negatively connected to the other k − 1 subsets. In social networks where edge
signs indicate positive or negative interactions, identifying conflicting groups may help in the study of
polarization [1, 31, 40, 43], echo chambers [17, 19] and the spread of fake news [12, 35, 42].

Detecting k conflicting groups is challenging due to various reasons. First, conflicting groups are not
simply dense subgraphs, so community-detection techniques for unsigned graphs are not effective.
Second, in real applications we can expect a majority of the network nodes to be neutral with respect
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to the conflicting structure. As an example, consider a social network where a heated discussion is
taking place between different political factions. Most users might not get involved in the quarrel,
and thus their interactions are not necessarily consistent with this division. For this reason, methods
for signed networks like correlation clustering and k-way partitioning may not be effective.

Our approach for detecting k-conflicting groups in signed networks extends the formulation of Bonchi
et al. [4], to arbitrary values of k, addressing an open problem left in that work, which studied only
the case k = 2. We argue that simply rounding the principal eigenvectors of the adjacency matrix
might yield unsatisfactory results. Instead, we show that the proposed objective can be interpreted in
terms of the Laplacian of a complete graph, and rely on the spectral properties of this matrix to derive
a novel optimization framework, spectral conflicting group detection (SCG). By carefully examining
the invariant subspaces of the aforementioned Laplacian, we reformulate the problem as a maximum
discrete Rayleigh quotient (MAX-DRQ) objective, which is an APX-hard problem. We propose two
algorithms, one deterministic, and one randomized with approximation guarantees. We show that the
obtained approximation is essentially the best possible, when using the largest eigenvalue as an upper
bound.

We perform an extensive set of experiments to compare the performance of our approach to that of
multiple alternatives from the literature, on a variety of synthetic and real datasets. Our algorithms
generally run faster, yield solutions of higher quality, and exhibit a better ability to find ground-truth
groups than competing methods. In addition, we discuss how to select the number of groups k in
practical scenarios.

2 Related work

Signed graph partition. Typical formulations partition the nodes of the signed graph into k sets so
that intra-edges are mostly positive and inter-edges are mostly negative. This is a special case of k
conflicting group detection with no neutral nodes. Spectral methods are competitive and we review
several representatives here. The signed Laplacian has been used for clustering [27], but resulting
clusters tend to behave like in unsigned spectral clustering [37]. k-way balanced normalized cut
(BNC) was proposed to address the issue [8]. Signed Laplacians [8, 27] were recently generalized
through matrix power means [32]. The state of the art method SPONGE [14] is based on a generalized
eigenvalue problem for constrained clustering [13] and works well on sparse graphs and large k. All
these methods partition the network and are ineffective in the presence of many neutral nodes.

Correlation clustering methods partition the entire network, but allow k to be unspecified. The
standard objective [2, 5, 16, 6] counts the number of edges that agree (disagree) with the partition,
i.e., positive (negative) intra-group edges and negative (positive) inter-group edges, and aims to
maximize (minimize) agreement (disagreement). The problem is APX-hard for general graphs
and has many variants. Giotis et al. [21] consider the case of fixed k and Puleo et al. [33] measure
per-node error. Our work is inspired by a recent variant [4], which formulates the discrete eigenvector
problem by maximizing the gap between agreement and disagreement with respect to the total size
of two conflicting groups. They propose a randomized O(

√
n)-approximation algorithm. However,

their approach does not extend to k > 2, as the two groups are identified by the sign of the optimal
vector. In fact, the discrete eigenvector problem is APX-hard and the best known result achieves an
approximation guarantee of Õ(n1/3) using an SDP-based approach [3]. The latter SDP formulation
cannot be extended to k > 2 as well. In this paper, we generalize the problem as MAX-DRQ and
present two algorithms for k ≥ 2.

Antagonistic group mining focuses on the setting with two groups. These works can be divided into
direct or indirect. Direct methods [18, 29, 30] search for structures such as bi-cliques or balanced
triads. Indirect methods [45, 46] find frequent conflicting patterns in database transactions. These
approaches cannot be easily extended to finding k > 2 conflicting groups.

To our knowledge, our only direct competitor is the KOCG method [11]. They formulate the
problem as trace-maximization, where each group is represented as a simplex with nonzero entries
indicating the participation of the nodes in the groups. However, their method finds conflicting groups
only within local regions and is sensitive to initialization, often converging to local maxima. Our
approach is fundamentally different and experimentally is shown to consistently outperform this
baseline.

2
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3 Preliminaries

We focus on simple undirected signed graphs. We denote G = (V,E) to be a signed graph, with
E = E+ ∪ E− consisting of the sets of positive edges E+ and negative edges E−. The signed
adjacency matrix of G is denoted by A ∈ {−1, 0, 1}n×n with Ai,j being +1 if (i, j) ∈ E+, −1 if
(i, j) ∈ E− and 0 otherwise. We use n = |V | and m = |E| to indicate the number of nodes and
edges of the signed graph G. We use E(V1, V2) to denote the set of edges between two subsets
V1, V2 ⊆ V , where V1, V2 are not required to be disjoint. We define E(V1) to be E(V1, V1), for any
V1 ⊆ V .

We consider the eigenvalues λ1(M) ≥ . . . ≥ λn(M) of a symmetric matrix M ∈ Rn×n, arranged
in non-increasing order and listed with multiplicities. We denote the corresponding eigenvectors
v1(M), . . . ,vn(M), with vi(M) associated with eigenvalue λi(M). By convention, v1(M) is the
leading eigenvector and {v1(M), . . . ,vi(M)} are the i principal eigenvectors.

We denote by In the identity matrix of size n × n, and by Jn the n × n matrix with all elements
being 1. For a matrix M ∈ Rn×n, we use Mi,: to indicate its i-th row, and M:,j to refer to
its j-th column. We also use Mi:,j: to indicate the submatrix of M that consists of rows i to n,
and columns j to n. We use tr(·) to denote the trace of a matrix, 〈·, ·〉F to denote the Frobenius
product between two matrices, and 〈·, ·〉 to denote the dot product between two vectors. We use
θ(u,v) = arccos(〈u,v〉/(‖u‖2‖v‖2)) ∈ [0, π] to indicate the angle between two nonzero vectors
u,v ∈ Rn. Finally, we write [n] to denote the set {1, . . . , n}.
Note. All omitted proofs can be found in the supplementary material.

4 Problem formulation

Given a signed graph G = (V,E) and an integer k, our goal is to find k mutually-disjoint node sets
S1, . . . , Sk ⊆ V that have the following informally-stated properties:

Property 1 For all i, j ∈ [k], with i 6= j, the edges in E(Si) are mostly positive, whereas the edges
in E(Si, Sj) are mostly negative.

Property 2 There should be a large number of interactions among the nodes of S1, . . . , Sk relative
to the total number of nodes in these groups. In other words, the subgraph induced by S1, . . . , Sk

should be as dense as possible.

Inspired by the formulation of Bonchi et al. [4], our objective function is also a variant of the
correlation-clustering problem [2], but with certain differences that we discuss below. For a set of
groups S1, . . . , Sk as a candidate solution, we quantify Property 1 by using the objective

f(S1, . . . , Sk) =
∑

h∈[k]

∑

(i,j)∈E(Sh)

Ai,j +
1

k − 1

∑

h,`∈[k]
h6=`

∑

(i,j)∈E(Sh,S`)

(−Ai,j). (1)

Compared to the standard objective of correlation clustering [2], which treats all edges equally, our
objective in Equation (1) weighs an intra-group edge k − 1 times more heavily than an inter-group
edge. The rationale is as follows: suppose the group sizes and edge densities stay fixed as k increases.
Since the number of inter-group edges grows quadratically with k and the number of intra-group
edges grows linearly with k, the weighting in Equation (1) prevents the inter-group edges from
dominating the objective. The value of (k − 1) in the denominator is chosen so that our objective
reduces to the standard case, i.e., the formulation of Bonchi et al. [4], when k = 2.

By introducing an indicator matrix X ∈ {0, 1}n×k with Xi,j = 1 if node i ∈ Sj and 0 otherwise,
our objective in Equation (1) can be rewritten as

f(S1, . . . , Sk) = 〈A,XXT 〉F −
〈A,XJkXT 〉F − 〈A,XXT 〉F

k − 1
=
〈A,XLkX

T 〉F
k − 1

, (2)

where Lk = kIk−Jk. The termXLkX
T in Equation (2) captures explicitly the relationship between

the k groups as (XLkX
T )i,j is positive (negative) whenever nodes i and j are in the same (different)

groups. Also, (XLkX
T )i,j = 0 if either node i or node j does not belong to any of the groups.

3
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Hence, the value of the Frobenius product 〈A,XLkX
T 〉F quantifies Property (1) for the groups

S1, . . . , Sk (which are encoded in matrix X).

Next, we analyze the matrix Lk, which is a fixed matrix not depending on the input signed graph.
Let Lk = UDUT be the eigendecomposition of Lk, where D = diag([0, k, . . . , k]) ∈ Rk×k, and
U ∈ Rk×k is a real-valued orthogonal matrix. As the geometric multiplicity of eigenvalue k is
k − 1, the matrix U is not unique. For the rest of the paper, we restrict our choice of U to be the
following

(U:,1)T = 1/
√
k [1, . . . , 1], (U:,2)T = c1 [k − 1,−1, . . . ,−1],

(U:,3)T = c2 [0, k − 2,−1, . . . ,−1], . . . (U:,k)T = ck−1 [0, . . . , 0, 1,−1],
(3)

where ci = 1/
√

(k − i+ 1)(k − i), for i = 1, . . . , k − 1.

By the change of variables Y = XU , we can rewrite our objective in Equation (2) as
〈A,XLkX

T 〉F = 〈A, Y diag([0, k, . . . , k])Y T 〉F = k tr((Y:,2:)TA(Y:,2:)). (4)
To account for Property (2) we normalize our objective with the total number of nodes in the groups
S1, . . . , Sk, which can be written as

∑

i∈[k]
|Si| = tr(Y TY ) = k (Y:,1)T (Y:,1) =

k

k − 1
tr((Y:,2:)T (Y:,2:)). (5)

Finally we replace the constraints on the indicator matrix X with the constraint that the rows of Y
should take values in the set {0, U1,:, . . . , Uk,:}. The equivalence holds since Xi,: picks the j-th row
of U if i ∈ Sj . Putting all this together, we can now give the final formulation of our problem:

max
Y ∈Rn×k\{0}

tr((Y:,2:)TA(Y:,2:))

tr((Y:,2:)T (Y:,2:))
, (6)

subject to Yi,: ∈ {0, U1,:, . . . , Uk,:}, for all i = 1, . . . , n.

Intuitively, our objective aims to find small-size conflicting groups with many edges satisfying Prop-
erty (1). Note that if we ignore the weighting between the inter-group and intra-group edges, Equa-
tion (6) can be expressed as (#{edges satisfying Property (1)} −#{edges violating Property (1)})
divided by | ∪h∈[k] Sh|.
Also, note that our optimization problem, as formulated above, is different from the trace-
maximization problem [26], which given two n × n matrices M and A, seeks to find an n × d
matrix Z to maximize the form tr(ZTAZ), subject to the constraint ZTMZ = Id. The reason
is that since we have no constraint on the group sizes, there is no predefined matrix M to require
XTMX = Ik.

5 Proposed spectral approach

The problem we study has been shown to be APX-hard for the special case of k = 2 [3]. Here we
consider a generalization for any k ≥ 2. In this section we present an efficient spectral algorithm by
leveraging the problem formulation (6).

Our starting point is that matrixU , as seen in Equations (3), is almost lower-triangular. We can use this
observation to partition Y:,2: column-wise, and reformulate the constraints in problem formulation (6)
as follows:

Y:,2 ∈ {0,−c1, c1(k − 1)}n implies Yi,2 =

{
c1(k − 1) if i ∈ S1,
−c1 if i ∈ ∪kh=2Sh,

Y:,3 ∈ {0,−c2, c2(k − 2)}n implies Yi,3 =





0 if i ∈ S1,
c2(k − 2) if i ∈ S2,
−c2 if i ∈ ∪kh=3Sh,

...

Y:,k ∈ {0,−ck−1, ck−1}n implies Yi,k =





0 if i ∈ ∪k−2h=1Sh,
ck−1 if i ∈ Sk−1,
−ck−1 if i ∈ Sk.
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Algorithm 1: SCG (A, k) Spectral Conflicting Group detection

Input :A is the adjacency matrix of the signed network; k is the number of groups.
Output :Groups S1, . . . , Sk.
A(0) ← A;
for t = 1, . . . , k − 1 do

r(t) ← Solve-Max-DRQ (A(t−1), k − t) ; // See Algorithm 2
if t < k − 1 then

St ← {i /∈ ∪t−1j=1Sj : |r(t)i | = (k − t)};
A(t) ← A(t−1);
A

(t)
i,: ← 01×n and A(t)

:,i ← 0n×1 for all i ∈ St ; // Remove edges E(St, V )

else Sk−1 ← {i /∈ ∪t−1j=1Sj : r
(t)
i = 1} and Sk ← {i /∈ ∪t−1j=1Sj : r

(t)
i = −1} ;

end
return S1, . . . , Sk;

Notice that Yi,j = 0 for all i ∈ ∪j−2h=1Sh and Yi,j = −cj−1 for all i ∈ ∪kh=jSh. We let A(0) = A,
and we define A(t) to be the adjacency matrix that results after removing from A(t−1) all entries that
correspond to edges incident to nodes in St. Then, the objective function (6) is equivalent to

tr((Y:,2:)TA(Y:,2:))

tr((Y:,2:)T (Y:,2:))
=

k−1∑

t=1

wt
(Y:,t+1)TA(Y:,t+1)

(Y:,t+1)T (Y:,t+1)
=

k−1∑

t=1

wt
(Y:,t+1)TA(t−1)(Y:,t+1)

(Y:,t+1)T (Y:,t+1)
, (7)

where wt = (Y:,t+1)T (Y:,t+1)/tr((Y:,2:)T (Y:,2:)) ∈ [0, 1] and
∑k−1

t=1 wt = 1. In other words,
Equation (7) shows that the objective function (6) is a convex combination of k− 1 discrete Rayleigh
quotients. Moreover, Equation (7) also suggests that the solution Y:,t+1 characterizes the group
St that conflicts the most with the (not yet decided) rest of groups Sh for h > t. Based on this
observation, we propose a scheme SCG (spectral conflicting groups), shown as Algorithm 1.

SCG executes k−1 iterations. At the t-th iteration, for each t ∈ [k−1], we find the vector Y:,t+1 that
maximizes the discrete Rayleigh quotient of A(t−1), while satisfying the constraints set on matrix Y .
We refer to this problem as MAX-DRQ:

r(t) = argmax
x∈{0,−1,k−t}n\{0}

xTA(t−1)x
xTx

. (8)

The vector Y:,t+1 is then given by Y:,t+1 = ct r
(t). We note that our scheme works with any method

that solves the MAX-DRQ problem. In Algorithm 1 (SCG) we refer to such a general method as
Solve-Max-DRQ. Strategies to solve MAX-DRQ are presented in Section 6. Once the MAX-DRQ
problem is solved in the t-th iteration, the vector r(t) is obtained. If t < k − 1, the t-th group is
recovered by St = {i /∈ ∪t−1j=1Sj : |r(t)i | = (k−t)}, and if t = k−1 (last iteration), the last two groups

are recovered by Sk−1 = {i /∈ ∪t−1j=1Sj : r
(t)
i = 1} and Sk = {i /∈ ∪t−1j=1Sj : r

(t)
i = −1}.

Note that Equation (7) justifies why it is not a good idea to use the k − 1 principal vectors of A to
identify the conflicting groups: the reason is that the coefficients [wt] are not fixed values.

6 Solving the maximum discrete Rayleigh quotient problem

In this section we present two solutions for MAX-DRQ. Our first solution is a deterministic algorithm
presented in Section 6.1. The second solution is a randomized algorithm presented in Section 6.2.
Both solutions first compute the leading eigenvector v1 of the input matrix A(t−1), and then round
v1 to the appropriate discrete form. The difference is the rounding method. We refer to this generic
algorithm as Solve-Max-DRQ, and it is the procedure used in the iterative step of SCG. Pseudocode
for Solve-Max-DRQ is given as Algorithm 2.
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Algorithm 2: Solve-Max-DRQ (A, q) Find maximum discrete Rayleigh quotient

Input :Square and symmetric matrix A, and positive integer q.
Output :The rounded vector r ∈ {0,−1, q}n.
v← the leading eigenvector of A;
(d1, r1)← Round(v, q) ; // d1 = sin θ(v, r1)
(d2, r2)← Round(−v, q) ; // d2 = sin θ(−v, r2)
if d1 ≤ d2 then r← r1;
else r← r2;
return r;

Algorithm 3: MinAngleRound (v, q) Deterministic rounding by minimum-angle heuristic

Input :Vector v ∈ Rn and positive integer q.
Output :Vector u∗ ∈ {0,−1, q}n with min angle to v.
{ik}nk=1 ← Sort v and return the indexes such that vi1 ≥ . . . ≥ vin ;
(d,u∗)← (∞,0);
(k1, k2)← (0, n+ 1);
while k1 < k2 do

u1 ← set the ik1+1-th element of u∗ to q;
u2 ← set the ik2−1-th element of u∗ to −1;
if min{sin θ(v,u1), sin θ(v,u2)} ≥ d then break;
if sin θ(v,u1) < sin θ(v,u2) then (k1, d,u

∗)← (k1 + 1, sin θ(v,u1),u1);
else (k2, d,u

∗)← (k2 − 1, sin θ(v,u2),u2);
end
return (d,u∗);

6.1 Deterministic rounding

Our goal is to find a discrete vector v∗ ∈ {0,−1, q}n that maximizes the quotient xTA(t−1)x/(xTx).
Let v be the leading eigenvector of A(t−1), i.e., the real-valued maximizer of xTA(t−1)x/(xTx).
The idea is to round v to a discrete vector u∗ ∈ {0,−1, q}n that minimizes sin θ(v,u), among all
vectors u ∈ {0,−1, q}n. It can be shown that such u∗ can be found by restricting the search over
O(n2) thresholded candidate vectors obtained by v. We formalize this below.

Definition 1 Let v ∈ Rn, q ∈ [k − 1] and a, b ∈ R be given. Define a threshold function σa,b :
Rn → Rn that maps v to a new vector σa,b(v), whose i-th coordinate is

σa,b(v)i =





q if vi ≥ a > 0,

−1 if vi ≤ b < 0,

0 otherwise,

and denote T = {ti}n+1
i=0 the sequence of all possible thresholds over the coordinates of v, that is,

t0 = ∞, tn+1 = −∞ and ti is the i-th largest coordinate of v, for i ∈ [n]. Then, the set of all
possible thresholded vectors of v is denoted by Γ(v) = {σa,b(v) : for all a, b ∈ T }.
Given a vector v, the discrete vector u∗ ∈ {0,−1, q}n that minimizes sin θ(v,u) can be computed
by using the following result.

Lemma 1 Let v ∈ Rn and q ∈ [k − 1] be given. The minimizer of sin θ(v,u) over all u ∈
{0,−1, q}n is equal to the minimizer of sin θ(v,u) over all u ∈ Γ(v) ∪ Γ(−v).

Since the size of the set Γ(v) ∪ Γ(−v) is O(n2), enumerating all vectors to find the optimal u is not
efficient for large datasets. To make our method scalable, we propose a linear-time rounding heuristic
in Algorithm 3, which finds a local optimum.

This heuristic works by initializing two indexes k1, k2, the indexes of the two thresholds, which are
initially set to 0 and n + 1, respectively. At each iteration, we move only 1 threshold, we either
increase k1 by 1 or decrease k2 by 1. This is determined by comparing sin θ(v, σtk1+1,tk2

(v)) and
sin θ(v, σtk1

,tk2−1
(v)) and choosing the smaller option.
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Algorithm 4: RandomRound (v, q) Randomized rounding

Input :Vector v ∈ Rn and positive integer q.
Output :Vector u ∈ {0,−1, q}n, a randomized rounded vector of v.
u← 0;
for i = 1, . . . , n do

if vi > 0 then ui ← q Bernoulli(|vi|/q) ;
else if vi < 0 then ui ← (−1) Bernoulli(|vi|) ;

end
d← sin θ(v,u);
return (d,u);

6.2 Randomized rounding

Our second algorithm for maximizing xTA(t−1)x/(xTx) in {0,−1, q}n is a randomized-rounding
scheme starting with the eigenvector v of A(t−1). Pseudocode is shown in Algorithm 4.

In more detail, we round v onto {0,−1, q}n by drawing Bernoulli trials. For each positive coordinate
vi we set ui ∼ q Bernoulli(|vi|/q), for each negative coordinate vi we set ui ∼ (−1) Bernoulli(|vi|),
and if vi = 0 we set ui = 0. In this way, we have E[u] = v. By applying similar arguments to the
ones presented by Bonchi et al. [4], we can show that the randomized-rounding algorithm provides a
O(q
√
n)-approximation guarantee to the MAX-DRQ problem. We present this result as Theorem 1.

Furthermore, Corollary 1 states that this result is tight for k = 2.

Theorem 1 Let v be the leading eigenvector of the adjacency matrix A of a signed graph, and let
q ≥ 1 be a positive integer. Then, the RandomRound algorithm with (v, q) as input is a (q

√
n)-

approximation to the optimum of the corresponding MAX-DRQ problem.

Lemma 2 Let OPT be the optimum solution to the MAX-DRQ problem. There exists a problem
instance such that λ1(A) ≥ OPT · Ω(

√
n).

Corollary 1 The integrality gap of algorithm RandomRound is Ω(
√
n), and thus, the approximation

result of Theorem 1 is asymptotically tight up to a factor of q.

7 Experimental evaluation

In this section, we evaluate our framework with both synthetic and real-world graphs. All the
experiments are executed on a machine with Intel Core i5 at 1.8 GHz with 8 GB RAM. All methods
have been implemented in Python 3.1 The datasets we have used are all publicly available and
the detailed information can be found in Supplementary § D.1. Beyond the experiments discussed
here, we present more results in Supplementary § D, including execution times, and a discussion on
deciding the number of groups k.

Proposed methods. Our approach (SCG) is a framework that admits different methods to solve
MAX-DRQ. We have instantiated our framework with the following routines. Minimum angle: the
deterministic rounding algorithm presented in Section 6.1; Randomized rounding: the randomized
rounding algorithm presented in Section 6.2; Maximum objective: a generalization of EigenSign [4],
that rounds v1(A) by finding an optimal threshold to maximize the objective; Bansal: motivated
by the pivot for correlation clustering [2], which finds two conflicting groups by considering the
neighborhood of a single node, and using the node that results in the maximum value of the objective.
These instantiations are denoted by SCG-MA, SCG-R, SCG-MO, and SCG-B, respectively.

Baselines. We use the following baselines: KOCG [11] is a method designed for a similar formulation
to ours. We use the authors’ implementation [10] with default hyperparameters α = 1/(k − 1),
β = 50, and ` = 5000. As KOCG returns a ranked list of disjoint subgraphs, each containing k
conflicting groups, we pick the k groups contained in their top-1 and top-r subgraphs. We choose
r so that the total group size equals the one returned by SCG-MA. We use two spectral algorithms:
BNC [8], which optimizes balanced normalized cut; and SPONGE [14], a method particularly suitable

1https://github.com/rutzeng/SCG-NeurIPS2020.
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Table 1: Polarity objective (Equation (6)) achieved by the proposed methods and the baselines
on real-world signed graphs, for two different values of k: the number of conflicting groups to be
detected. Dashes indicate that a method exceeded the memory limit.

WoW-EP8 Bitcoin WikiVot Referendum Slashdot WikiCon Epinions WikiPol

|V | 790 5 881 7 115 10 884 82 140 116 717 131 580 138 587
|E| 116 009 21 492 100 693 251 406 500 481 2 026 646 711 210 715 883
|E−|/|E| 0.2 0.2 0.2 0.1 0.2 0.6 0.2 0.1

k = 2 SCG-MA 236.6 28.8 71.5 172.2 77.5 155.2 128.3 82.8
SCG-MO 236.6 29.5 71.7 174.1 79.7 175.7 128.7 88.4
SCG-B 200.6 21.7 37.6 116.3 61.0 129.3 156.4 46.5
SCG-R 218.3 14.9 55.7 119.6 29.9 100.2 70.9 36.0
KOCG-top-1 9.0 3.6 4.0 4.3 1.0 6.2 4.2 1.0
KOCG-top-r 18.2 3.8 2.5 14.0 3.7 2.4 6.2 0.9
BNC-k 184.6 5.3 15.8 41.5 — — — —
BNC-(k + 1) -0.7 -10.8 -1.0 -1.0 — — — —
SPONGE-k 191.4 5.1 15.8 41.5 — — — —
SPONGE-(k + 1) 88.0 1.0 1.0 1.0 — — — —

k = 6 SCG-MA 207.3 14.6 45.5 84.9 37.8 102.6 88.8 57.5
SCG-MO 226.9 15.2 47.0 55.6 34.6 111.6 129.2 41.8
SCG-B 211.6 9.3 23.3 116.2 47.7 46.1 94.5 46.0
SCG-R 198.1 5.0 9.7 39.8 7.3 16.2 39.4 5.5
KOCG-top-1 7.0 4.4 5.5 8.8 2.6 4.5 8.7 4.8
KOCG-top-r 8.5 2.9 2.9 5.0 3.6 4.0 6.5 3.0
BNC-k 185.2 5.2 15.8 41.5 — — — —
BNC-(k + 1) -0.2 -4.2 -1.1 -0.8 — — — —
SPONGE-k 58.5 5.0 15.8 41.5 — — — —
SPONGE-(k + 1) 48.1 0.8 1.0 1.0 — — — —

for sparse graphs and large k. To detect k conflicting groups using the spectral clustering algorithms,
we compare with two approaches. The first approach is to directly apply BNC and SPONGE to detect
k clusters and return all the detected clusters as conflicting groups. The second approach is to detect
(k+ 1) clusters, then heuristically treat the largest cluster as the non-conflicting cluster, and return the
k smallest clusters as the detected conflicting groups. Let BNC-k and SPONGE-k denote SPONGE
and BNC with the first approach and let BNC-(k + 1) and SPONGE-(k + 1) denote the two with the
second approach. We use a publicly-available implementation [15] for BNC and SPONGE.

Results on real-world networks. We first measure the quality of the proposed methods and baselines
with respect to the polarity objective, i.e., Equation (6), on real-world signed graphs. The results
are shown in Table 1. The running times of all methods are listed in Supplementary § D.2. We
observe that mostly, SCG-MA and SCG-MO achieve the best polarity scores. They are also the
fastest, and usually find larger groups. An example of the sizes of the groups found by all methods
is given in Supplementary § D.3. The SCG-B algorithm identifies conflicting groups by exploring
local neighborhoods, and its detected groups tend to be located around high-degree nodes. Although
SCG-B achieves the largest polarity on Referendum for k = 6, it only detects 2 groups, already
covered by SCG-MA and SCG-MO. As the groups are not necessarily the high-degree nodes, SCG-B
performs less competitive on WikiVot and WikiCon for k = 6. Finally, SCG-R is not as competitive
as SCG-MA or SCG-MO and is slower due to random sampling.

With respect to our direct competitor KOCG, the KOCG-top-1 variant performs slightly better than
KOCG-top-r when k = 6. As KOCG finds groups in local regions, KOCG-top-1 returns much smaller
groups than the other methods. On the contrary, KOCG-top-r intersects several local groups in
different graph regions but remains ineffective compared to SCG-MA under the same total group size.
All KOCG settings perform worse than BNC and SPONGE on the first 4 datasets.

Finally, the spectral-clustering methods BNC and SPONGE exceed the memory limit (caused by
k-means) on large datasets. The k groups returned by BNC-k and SPONGE-k usually consist of one
large group with many non-conflicting nodes and k − 1 very small groups. Since BNC-(k + 1) and
SPONGE-(k + 1) can use the spare cluster to put the non-conflicting nodes, we expect they perform
better than BNC-k and SPONGE-k but it turns out to be worse on all 4 real-world networks. Despite
of the unexpected results, both versions of BNC and SPONGE are less effective than SCG-MA and
SCG-MO at finding conflicting groups in real-world graphs.

Results on synthetic graphs. In our second experiment, we use synthetic graphs to measure how
well the methods recover ground-truth conflicting groups. We use the modified signed stochastic
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Figure 1: F1-score (left) and polarity score (right) as a function of the parameter η. The input signed
graphs are generated by the m-SSBM model, for a graph of size n = 2 000, with k = 6 ground-truth
groups, each having size ` = 100.

block model (m-SSBM) [4], which has 4 parameters; n: the graph size; k: the number of conflicting
groups; `: the size of each of the conflicting groups (all have the same size); and η ∈ [0, 1]: a
parameter that controls the edge probabilities. Edges in the same group are positive with probability
1− η and negative or absent with probability η/2. Edges between distinct groups are negative with
probability 1− η and positive or absent with probability η/2. All other edges have equal probability
of min(η, 1/2) of being positive or negative. Hence, the smaller the value of η, the denser the
conflicting groups and the lower the noise level. Note that the conflicting groups only emerge when
η ≤ 2/3, since m-SSBM is expected to have more negative edges in the groups and more positive
edge between groups if η > 2/3.

In this experiment we measure the recovery rate of the ground-truth groups using the F1 score, with
precision and recall averaged over all groups. In Figure 1 we report the results of the m-SSBM model
with parameters n = 2 000, k = 6, ` = 100, and η = 0 : 0.1 : 0.6. Each setting is repeated 20 times,
and we report the average F1 score and polarity scores.

As seen in Figure 1, the recovery rate (F1 score) for all methods declines with η, since the graph
becomes sparser and more noisy. It is clear that SCG-MA and SCG-MO are robust methods, handling
very well the increasing noise level. It is worth noting that SPONGE-(k + 1) performs the best in this
experiment with respect to both F1 and polarity. We also see that SCG-B is less competitive here, as
in this data the conflicting groups are not concentrated around high-degree nodes. In summary, under
the m-SSBM model, our polarity score is consistent with the F1 score, and our proposed methods
SCG-MA and SCG-MO are effective in detecting the ground-truth conflicting groups.

8 Conclusions and future work

We propose an efficient method for detecting k conflicting groups in a signed network. Our approach
relies on interpreting the problem objective in terms of the Laplacian of a complete graph, character-
izing the spectral properties of this matrix, and deriving a novel formulation in which each conflicting
group is characterized by the solution to the maximum discrete Rayleigh quotient problem.

Our work opens several exciting directions for future work. First, it remains open whether we can
improve the O(

√
n)-approximation for the maximum discrete Rayleigh quotient problem, using an

approach that does not rely on rounding the leading eigenvector, such as by extending the SDP-based
algorithm in [3]. Second, it would be interesting to explore the applicability of our approach to
unsigned graphs for the task of detecting dense subgraphs. Third, the modified Stochastic Block
Model (m-SSBM) is actually a special case of Label Stochastic Block Model (LSBM) [23]. It would
be relevant to analyze the recovery guarantee of our proposed method in m-SSBM with respect to the
fundamental limit results [44] and the interplay with the Bethe-Hessian operator [34] in the sparse
regime. Finally, the difference in the empirical performance of our two rounding techniques and the
spectral clustering baseline SPONGE [14] in the real-world networks and the synthetic network is
somewhat striking. It is possible that some properties or structures exist in the real-world networks
but not in the synthetic networks. An interesting question is to explain this behavior analytically, in
particular with respect to properties of real-world networks.
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Broader Impact

As the task we tackle in this paper belongs to the broad category of data mining, and as our study is
mainly of theoretical nature, the impact of our work to the society is indirect. With respect to positive
consequences, we name two possible applications that could impact the modern society. First, the
rise of polarization and fake news is related to the existence of conflicting groups. Thus, having an
efficient characterization tool is the first step to mitigate the situation. Second, both collaboration and
competition exist in a diverse environment and detecting conflicting groups helps to understand the
interplay of the two. With respect to negative consequences, we do not foresee specific issues when
applying our method.
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A Proof of Lemma 1

Proof: We have ‖v‖2 = 1 and, without loss of generality, we can assume that the coordinates
of v are sorted in non-increasing order. Let T = {ti}n+1

i=0 be all possible thresholds for v and
T ′ = {t′i}n+1

i=0 be all possible thresholds for −v. Recall the definition of θ(·, ·) from Section 3
that θ(a,b) = arccos(〈a,b〉/‖a‖2‖b‖2) ∈ [0, π] for any two nonnegative vectors a,b ∈ Rn, so
sin θ(a,b) is always non-negative. Let u∗ be the minimizer of sin θ(v,u) over all u ∈ Γ(v)∪Γ(−v).

For simplicity, we assume u∗ ∈ Γ(v) and 〈v,u∗〉 ≥ 0. This is because if the dot product is negative,
we can make it positive by reversing the sign of v. Let k∗1 , k

∗
2 be the two thresholds such that

u∗ = σtk∗1 ,tk∗2
(v). We will show that sin θ(v,u) ≥ sin θ(v,u∗) for any u ∈ {0,−1, q}n.

Fix any u ∈ {0,−1, q}n. Our first step is to identify the coordinates that ui 6= u∗i , denoted by
I = {j : uj 6= u∗j}. Moreover, since u∗j = q for all j ≤ k∗1 , u∗j = −1 for all j ≥ k∗2 , and u∗j = 0 for
all j ∈ (k∗1 , k

∗
2), we further divide I into 6 disjoint subsets:

I11 = {j ∈ I : uj = 0, j ≤ k∗1}, I12 = {j ∈ I : uj = −1, j ≤ k∗1},
I21 = {j ∈ I : uj = q, j ∈ (k∗1 , k

∗
2)}, I22 = {j ∈ I : uj = −1, j ∈ (k∗1 , k

∗
2)},

I31 = {j ∈ I : uj = 0, j ≥ k∗2}, I32 = {j ∈ I : uj = q, j ≥ k∗2}.

Denote the overall division by k∗1 and k∗2 by I1 = I11 ∪ I12, I2 = I21 ∪ I22, and I3 = I31 ∪ I32.

We claim that for any such u, there exists a vector ũ ∈ Γ(v) ∪ Γ(−v) such that sin θ(v,u) ≥
sin θ(v, ũ), which is sufficient to complete the proof since u∗ is the minimizer of sin θ(v,u) for all
u ∈ Γ(v) ∪ Γ(−v). We will show how to find such vector ũ by examining the following two cases:

(Case 1) 〈v,u〉 ≥ 0:

Let c1 = |I21| − |I1| and c2 = |I22| − |I3|. The claim is proved by setting ũ = σtk∗1+c1
,tk∗2−c2

(v),
which is justified by the following two observations.

First, observe that ‖ũ‖2 ≤ ‖u‖2 because ‖ũ‖22 + |I12|+ q2|I32| = ‖u‖22.

Second, write 〈v,u〉 as

〈v,u〉 = 〈v,u∗〉+ q


−

∑

j∈I1
vj +

∑

j∈I21∪I32
vj


+


∑

j∈I3
vj +

∑

j∈I12∪I22
(−vj)


 . (1)
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Notice that some terms of the summation in Equation (1) are negative, in particular,
∑

j∈I12
(−vj) +

∑

j∈I32
qvj < 0,

since vj > 0 for all j ∈ I12, and vj < 0 for all j ∈ I32.

Therefore, we have

〈v,u〉 ≤ 〈v,u∗〉+ q


−

∑

j∈I1
vj +

∑

j∈I21
vj


+


∑

j∈I3
vj +

∑

j∈I22
(−vj)


 . (2)

Since v is sorted non-increasingly, the latter two terms in (2) are smaller than

q


−

|I1|∑

j=1

vk∗1−j +

|I21|∑

j=1

vk∗1−|I1|+j


+



|I3|∑

j=1

vk∗2+j +

|I22|∑

j=1

(−vk∗2+|I3|−j)


 .

That is,

〈v,u〉 ≤ 〈v,u∗〉+ q


−

|I1|∑

j=1

vk∗1−j +

|I21|∑

j=1

vk∗1−|I1|+j


+



|I3|∑

j=1

vk∗2+j +

|I22|∑

j=1

(−vk∗2+|I3|−j)




= 〈v, ũ〉

Hence, we have 0 ≤ cos θ(v,u) ≤ cos θ(v, ũ), which is equivalent to sin θ(v,u) ≥ sin θ(v, ũ) due
to the non-negativity of sin θ(·, ·).

(Case 2) 〈v,u〉 < 0:

Let c1 = |{j ∈ I21 : vj < 0}|+ |I32| and c2 = |{j ∈ I22 : vj > 0}|+ |I12|. The claim is proved
by setting ũ = σt′c1 ,t

′
c2

(−v), which is justified in the below two observations.

First, observe that ‖ũ‖2 ≤ ‖u‖2 because

‖ũ‖22 + q2|{j ∈ I21 : vj ≥ 0}|+ |{j ∈ I22 : vj ≤ 0}| = ‖u‖22.
Second, write 〈v,u〉 by Equation (1) as

〈v,u〉 = 〈v,u∗〉+ q


−

∑

j∈I1
vj +

∑

j∈I21∪I32
vj


+


∑

j∈I3
vj +

∑

j∈I12∪I22
(−vj)


 . (3)

Notice that some terms of the summation in Equation (3) are non-negative, in particular
∑

j∈I21,vj≥0
qvj +

∑

j∈I22,vj≤0
(−vj) ≥ 0.

Therefore, by letting I−21 = {i ∈ I21,vi < 0} and I+22 = {i ∈ I22,vi > 0}, we have

〈v,u〉 ≥ 〈v,u∗〉+ q


−

∑

j∈I1
vj +

∑

j∈I32∪I−21

vj


+


∑

j∈I3
vj −

∑

j∈I12∪I+22

vj


 (4)

≥ q
∑

j∈I32∪I−21

vj −
∑

j∈I12∪I+22

vj (5)

≥ −


q
|I32∪I−21|∑

j=1

t′j −
n∑

j=|I12∪I+22|+1

t′j


 = −〈v, ũ〉,

where Inequalities (4) and (5) hold because I1 ⊆ [k∗1 ] and I3 ⊆ [k∗2 , · · · , n].

Hence, we have 0 ≥ cos θ(v,u) ≥ cos θ(v, ũ), which is equivalent to sin θ(v,u) ≥ sin θ(v, ũ) due
to the non-negativity of sin θ(·, ·). �
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B Proof of Theorem 1

Proof: Let u be the random variable defined in Section 6.2, such that ui ∼ q Bernoulli(|vi|/q) for
positive coordinates vi > 0, ui ∼ (−1)Bernoulli(|vi|) for negative coordinates vi < 0, and ui = 0
if vi = 0. For convenience, we define

g(x) =





q, x > 0

−1, x < 0

0, x = 0.

We are interested in analyzing the expectation of uTAu/uTu, which is given by

E
[
uTAu

uTu

]
=

∑

(k1,k2):1≤k1+k2≤n
E
[
uTAu

uTu
| uTu = qk1 + k2

]
P(uTu = qk1 + k2)

=
∑

(k1,k2):1≤k1+k2≤n

E
[
uTAu | uTu = qk1 + k2

]
P(uTu = qk1 + k2)

qk1 + k2
. (6)

The term E
[
uTAu | uTu = qk1 + k2

]
P(uTu = qk1 + k2) in Equation (6), can be written as

∑

i6=j

Ai,jg(vi)g(vj)P(ui = g(vi),uj = g(vj) | uTu = qk1 + k2)P(uTu = qk1 + k2), (7)

and using Bayes’ theorem we can re-write Equation (7) as∑

i 6=j

Ai,jg(vi)g(vj)P(uTu = qk1+k2 | ui = g(vi),uj = g(vj))P(ui = g(vi),uj = g(vj)). (8)

By Equations (6) and (8) and since g(vi)g(vj)P(ui = g(vi),uj = g(vj)) = vivj , we have
∑

(k1,k2):1≤k1+k2≤n

∑
i6=j Ai,jvivjP(uTu = qk1 + k2 | ui = g(vi),uj = g(vj))

qk1 + k2

=
∑

i 6=j

Ai,jvivj

∑

(k1,k2):1≤k1+k2≤n

P(uTu = qk1 + k2 | ui = g(vi),uj = g(vj))

qk1 + k2

=
∑

i 6=j

Ai,jvivjE
[

1

uTu
| ui = g(vi),uj = g(vj)

]
. (9)

As the reciprocal function is convex, we apply Jensen’s inequality to Equation (9) to obtain

E
[
uTAu

uTu

]
≥

∑
i 6=j Ai,jvivj

E [uTu | ui = g(vi),uj = g(vj))]
. (10)

To estimate the denominator in Equation (10), we compute

E
[
uTu | ui = g(vi),uj = g(vj))

]
= g(vi)

2 + g(vj)
2 +

∑

k 6=i,k 6=j

g(vk)2 · |vk|
|g(vk)|

≤ max

(
q
√
n− 2, 2q2 + q

n− 2√
n

)
. (11)

Combining (10) and (12) we get

E
[
uTAu

uTu

]
≥

∑
i 6=j Ai,jvivj

max
(
q
√
n− 2, 2q2 + q n−2√

n

) =
λ1(A)

max
(
q
√
n− 2, 2q2 + q n−2√

n

) . (12)

Hence, the expected approximation ratio is

O(q
√
n)E

[
uTAu

uTu

]
≥ λ1(A) ≥ OPT ,

where OPT is the optimum of MAX-DRQ. �
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C Proof of Lemma 2

Proof: Consider a graph G = (V,E) consisting of |V | = n = 2c+1 nodes, for some c ≥ 1, where
2c nodes form a negative clique and the extra node v is negatively connected to c of the nodes in the
clique. Let A be the signed adjacency matrix of G. We will show the problem instance defined on G
results in an optimal value of MAX-DRQ equal to OPT = O(1), while λ1(A) is Ω(

√
n).

Any solution u ∈ {0,−1, q}n to MAX-DRQ defines the two sets Sp = {i : ui = q} and Sn = {i :
ui = −1}. We claim that maxu∈{0,−1,q}n uTAu/uTu ≤ 2, and will show it by considering 3 cases:

(Case 1) v /∈ Sp ∪ Sn:

uTAu

uTu
=
−q2

2|E(Sp)|︷ ︸︸ ︷
|Sp|(|Sp| − 1) +q

2|E(Sp,Sn)|︷ ︸︸ ︷
2|Sp||Sn| −

2|E(Sn)|︷ ︸︸ ︷
|Sn|(|Sn| − 1)

q2|Sp|+ |Sn|

=
−(q|Sp| − |Sn|)2 + q2|Sp|+ |Sn|

q2|Sp|+ |Sn|
. (13)

Let r = q|Sp| − |Sn| and let ε = r/q|Sp| ≤ 1. Then, Equation (13) can be written as

uTAu

uTu
=
q(q + 1)|Sp| − r(r + 1)

|Sp|q(q + 1)− r

=
(q + 1) + 1

4(q|Sp|)
(q + 1)− ε − (r + 1

2 )2

q|Sp|(q + 1− ε)

≤
(q + 1) + 1

4(q|Sp|)
(q + 1)− ε

≤ q + 2

q
≤ 2 = O(1).

(Case 2) v ∈ Sp:

uTAu = −q2

(|Sp| − 1)(|Sp| − 2)︸ ︷︷ ︸

2|E(Sp\{v})|

+2|E({v}, Sp)|




+ q


2(|Sp| − 1)|Sn|︸ ︷︷ ︸

2|E(Sp\{v},Sn)|

+2|E({v}, Sn)|


− |Sn|(|Sn| − 1)︸ ︷︷ ︸

2|E(Sn)|

= − (q(|Sp| − 1)− |Sn|)2 + |Sn|
+ q2(|Sp| − 1) + 2q|E({v}, Sn)| − 2q2|E({v}, Sp)|

≤ − (q(|Sp| − 1)− |Sn|)2 + |Sn|+ q2(|Sp| − 1) + 2q|Sn|. (14)

Let r = q(|Sp| − 1)− |Sn| and write Equation (14) as

uTAu = −(r − q)2 + q(q + 3)(|Sp| − 1) + q2 − r
≤ q(q + 3)(|Sp| − 1) + q2 − r. (15)

By (15) and letting ε = r/q(|Sp| − 1) ≤ 1, we have

uTAu

uTu
≤ q(q + 3)(|Sp| − 1) + q2 − r
q(q + 1)(|Sp| − 1) + (q2 − r)

= 1 +
2

(q + 1) + (q/(|Sp| − 1)− ε) ≤ 2 = O(1).
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(Case 3) v ∈ Sn:

uTAu = q2|Sp|(|Sp| − 1) + q


|Sp|(|Sn| − 1)︸ ︷︷ ︸

2|E(Sn\{v},Sp)|

+2|E({v}, Sp)|




−


(|Sn| − 1)(|Sn| − 2)︸ ︷︷ ︸

2|E(Sn\{v})|

+2|E({v}, Sn)|




= − (q|Sp| − (|Sn| − 1))
2

+ q2|Sp|+ |Sn| − 1

+ 2q|E({v}, Sp)| − 2|E({v}, Sn)|
≤ − (q|Sp| − (|Sn| − 1))

2
+ q2|Sp|+ |Sn| − 1 + 2q|Sp|. (16)

Let r = q|Sp| − (|Sn| − 1) and write Inequality (16) as

uTAu = −(r +
1

2
)2 + q(q + 3)|Sp|+

1

4

≤ q(q + 3)|Sp|+
1

4
. (17)

By (17) and letting ε = (r + 1)/q|Sp| ≤ 1, we have

uTAu

uTu
≤ q(q + 3)|Sp|+ 1

4

q(q + 1)|Sp| − (r + 1)

= 1 +
2 + 1/(4q|Sp|) + ε

(q + 1)− ε
≤ 2 = O(1).

Therefore, we know that the optimal solution OPT of MAX-DRQ is O(1). However, consider a
vector x ∈ Rn such that

x =




√
n+ 1

2n
,

1√
2n
, · · · , 1√

2n︸ ︷︷ ︸
c entries

,
−1√
2n
, · · · , −1√

2n︸ ︷︷ ︸
c entries


 , (18)

where the first entry of x corresponds to v. Then, the vector x defined in Equation (18) gives

xTAx

xTx
=

√
n+ 1(n− 1)

2n
+
n− 1

2n

=

√
n+ 1 + 1

2
−
√
n+ 1 + 1

2n
= Ω(

√
n).

As λ1(A) = maxx∈Rn\{0} xTAx/xTx, we have shown λ1(A) ≥ OPT · Ω(
√
n). �
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D Experiment Results

D.1 Dataset

WoW-EP8 [1] is the interaction network of authors in the 8th legislature of the EU Parliament, where
edge signs indicate if two authors are collaborative or competitive to each other. Bitcoin [4] is
the trust-distrust network of users trading on the Bitcoin OTC platform. WikiVot [4] collects the
positive and negative votes for electing Wikipedia admins. Referendum [3] collects the tweets about
the Italian constitutional referendum in 2016, and edge signs indicate if two users are classified
to have the same stance or not. Slashdot [4] is a friend-foe network collected from the Slashdot
Zoo feature. WikiCon [2] collects the positive and negative iterations of users editing the English
Wikipedia. Epinions [4] is the trust-distrust network of users on the online social network Epinions.
WikiPol [5] is the interaction network of users who have edited the English Wikipedia pages about
politics.

D.2 Execution Time

Table 2: Running times for the results shown in Table 1. All times are shown in seconds. Dashes
indicate that a method cannot finish execution due to memory limit exceeded.

WoW-EP8 Bitcoin WikiVot Referendum Slashdot WikiCon Epinions WikiPol

|V | 790 5 881 7 115 10 884 82 140 116 717 131 580 138 587
|E| 116 009 21 492 100 693 251 406 500 481 2 026 646 711 210 715 883
|E−|/|E| 0.2 0.2 0.2 0.1 0.2 0.6 0.2 0.1

k = 2 SCG-MA 2 1 2 4 10 217 109 25
SCG-MO 2 1 2 4 11 70 94 15
SCG-B 13 9 21 44 693 3 584 1 906 1 624
SCG-R 4 3 6 17 70 485 37 217
KOCG 3 11 16 25 1 243 3 269 3 208 3 506
BNC-k 2 1 2 4 — — — —
BNC-(k + 1) 2 1 2 4 — — — —
SPONGE-k 2 5 3 4 — — — —
SPONGE-(k + 1) 2 11 4 9 — — — —

k = 6 SCG-MA 3 1 6 16 75 394 132 136
SCG-MO 3 1 6 18 74 229 107 139
SCG-B 17 29 78 201 3 280 10 637 5 455 5 714
SCG-R 3 5 9 21 118 415 219 892
KOCG 1 5 8 14 690 1 837 1 845 1 724
BNC-k 2 1 2 4 — — — —
BNC-(k + 1) 2 1 2 4 — — — —
SPONGE-k 2 7 6 20 — — — —
SPONGE-(k + 1) 2 5 4 26 — — — —

D.3 Detected Group Sizes

Figure 2, extracted from the Referendum dataset, shows the typical distribution of the group sizes
for all the comparison methods. This pattern is similar to all other datasets except WoW-EP8. That
is, SCG-MA, SCG-MO, and SCG-R return the largest groups while KOCG-top-1, BNC-(k + 1), and
SPONGE-(k + 1) return the smallest groups.

SCG-MA SCG-MO SCG-B SCG-R KOCG-Top-1 KOCG-Top-r BNC-k BNC-(k+1) SPONGE-k SPONGE-(k+1)

101

103

|S
t|

[Referendum] Detected Group Size

Figure 2: The typical group size distribution on all the datasets except WoW-EP8 when k = 6.

On the other hand, WoW-EP8 shows a different group-size distribution, which is shown in Figure 3.
All SCG methods and BNC-k find one giant group. By checking the polarity (Table 1 in main paper),
their scores are high, so this probably suggests there exists a giant conflicting group in the network.
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SCG-MA SCG-MO SCG-B SCG-R KOCG-Top-1 KOCG-Top-r BNC-k BNC-(k+1) SPONGE-k SPONGE-(k+1)
100

101
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103

|S
t|

[WoW-EP8] Detected Group Size

Figure 3: The group size distribution on WoW-EP8 when k = 6.

D.4 Deciding k

We present a heuristic similar to Elbow Method [6] to decide k, which consists of the following steps:

1. Run SCG multiple times with different k.

2. Draw a DRQ-Plot, where the Discrete Rayleigh Quotient (DRQ) values in each run are
sorted, and then plot the i-th largest DRQ value at the i-th location.

3. Decide k to be one of the “knees” of the curve.

The reason why the heuristic works is that, if there exist conflicting groups and the noise-level is
not too high, then the leading eigenvector should be indicative of the true conflicting groups and
have large DRQ values in the first k − 1 iterations, while the leading eigenvector only captures noise
structures and has low DRQ value after the k-th iteration. Therefore, it is expected to see knees of the
curve at the (k − 1)-th iteration.

First, we evaluate the heuristic using m-SSBM under the same setting (k = 6, ` = 100, and n = 2 000)
by varying η = 0 : 0.1 : 0.6. The result of detecting the conflicting groups by SCG-MA is depicted in
Figure 4. As expected, the most prominent knee is at the 5-th iteration when the noise-level is not too
high (η ≤ 0.3). As the noise-level increases (η ≥ 0.4), the knee at the 5-th iteration becomes less
obvious and some artificial knees that fit the random noise emerge.
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Figure 4: Run SCG-MA with different k on networks generated by m-SSBM (k = 6, ` = 100, and
n = 2 000). Each setting is repeated 20 times and reported the average.

Finally, we use the heuristic on the real-world datasets to decide k and show the result in Figure 5.
Our analysis suggests that Referendum has 4 conflicting groups, because the most prominent knee
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appears at the 3-th iteration, while on Epinions, there are two prominent knees at the 3rd and the
4-th iterations, so there are probably 4 or 5 conflicting groups in the network.
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Figure 5: Run SCG-MA Real-world networks with different k.
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Improved analysis of RSVD for
top-eigenvector approximation

B

Figure: A cat looking into a mirror that randomly projects the cat’s image.

We analyze the approximated leading eigenvector û returned by Randomized SVD
(RSVD) for a given symmetric matrix A, and study its theoretical guarantee with
respect to the ratio R(û) = ûTAû

λ1
, where λ1 is the leading eigenvalue. By relating

to the random projection lemma, we sharpen the theoretical guarantee of R(û) using
RSVD with any number of iterations.
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Abstract
Computing the top eigenvectors of a matrix is
a problem of fundamental interest to various
fields. While the majority of the literature has
focused on analyzing the reconstruction error
of low-rank matrices associated with the re-
trieved eigenvectors, in many applications one
is interested in finding one vector with high
Rayleigh quotient. In this paper we study the
problem of approximating the top-eigenvector.
Given a symmetric matrix A with largest
eigenvalue λ1, our goal is to find a vector û
that approximates the leading eigenvector u1
with high accuracy, as measured by the ratio
R(û) = λ−1

1 ûTAû/ûT û. We present a novel
analysis of the randomized SVD algorithm of
Halko et al. (2011b) and derive tight bounds
in many cases of interest. Notably, this is the
first work that provides non-trivial bounds for
approximating the ratio R(û) using random-
ized SVD with any number of iterations. Our
theoretical analysis is complemented with a
thorough experimental study that confirms
the efficiency and accuracy of the method.

1 INTRODUCTION

Spectral methods, which typically rely on computing
the leading eigenvectors of an appropriately-designed
matrix, have been shown to provide high-quality so-
lutions to a variety of problems in the fields of data
analysis, optimization, clustering and learning (Kannan
and Vempala, 2009). From a computational perspec-

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

tive, randomized approaches for spectral methods often
give good estimates of leading eigenvectors and low-
rank structures, opening up the possibility of dealing
with truly large datasets (Halko et al., 2011a).

In this paper, we study the problem of approximat-
ing the leading eigenvector of a matrix while using a
small amount of memory and making a limited num-
ber of passes over the input matrix. More concretely,
given a symmetric matrix A with largest eigenvalue λ1,
our goal is to find a vector û that maximizes the ra-
tio

R(û) = λ−1
1

ûTAû
ûT û . (1)

Note that since λ1 is fixed given A, it can be omitted
from the definition of R; it is used only for convenience,
to ensure that R ≤ 1. Often, in different applications,
in addition to having to select which matrix A to use, it
is also required that û ∈ T ⊆ Rn, where T is typically
a discrete subspace of Rn. A common strategy in this
case, is to first compute an approximation of the leading
eigenvector in Rn and then “round” the solution in T .
Below we outline some prominent examples of this
scheme.

(1) The most direct example is PCA, where A is the
covariance matrix (Jolliffe, 1986); in this case T = Rn,
and no rounding is required; (2) In the community-
detection problem we can partition a network into two
communities (and then recursively find more communi-
ties) by maximizing modularity (Newman, 2006), which
can be mapped to our setting by taking A to be the
modularity matrix and T = {±1}n; (3) The problem
of finding k conflicting groups in signed networks can
be formulated by taking A to be the adjacency ma-
trix of the signed network and T = {0,−1, `}n, for
` ∈ [k− 1] (Bonchi et al., 2019; Tzeng et al., 2020); (4)
For the fair densest subgraph, Anagnostopoulos et al.
(2020) consider T = {0, 1}n and obtain A after project-
ing the adjacency matrix onto the subspace orthogonal
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to a given fairness labeling z ∈ {±1}n; (5) In several
other applications, a solution to our problem is used
as an intermediate step in the proposed method (Ab-
dullah et al., 2014; Hopkins et al., 2016; Allen-Zhu and
Li, 2016; Silva et al., 2018).

Despite numerous pass-efficient algorithms for comput-
ing top eigenvectors proposed in the literature, prior
analysis of R(û) have strong limitations when applied
in practice. The main shortcoming is that most works
provide additive bounds and require Ω(lnn) passes to
be meaningful (Simchowitz et al., 2018), whereas a
smaller number of passes (constant or even a single
pass) is critical in practical settings. It is unclear in
the state-of-the-art whether Ω(lnn) passes is necessary
for previous methods, or whether such a bound is an
artifact of the analysis.

In this paper we demonstrate that the requirement of
Ω(lnn) passes in the analysis of prior works is artifi-
cial. We show this by giving a multiplicative bound
for R(û) achieved by the randomized SVD method
(RSVD) of Halko et al. (2011b), which is one of the
most prominent and widely-implemented pass-efficient
algorithms (Pedregosa et al., 2011; Řehůřek and Sojka,
2010; Corporation, 2021; Erichson et al., 2019; Terray
and Pinsard, 2021; Liutkus, 2021)

Our analysis shows that for any positive semidefinite
matrix, RSVD returns with high probability a vector û
satisfying R(û) = Ω

(
(d/n)1/(2q+1)) after q ∈ N it-

erations (Theorem 1), using O(dn) space for d ∈ N,
where typically d� n (e.g., d = O(lnn)). Theorem 2
shows that our analysis is tight. Notably, our analysis
subsumes the guarantee by prior works in the regime
of Ω(lnn) passes (Remark 1), and to the best of our
knowledge, provides the first non-trivial guarantee of
R(û) in the literature of pass-efficient algorithms for
o(lnn) passes. Moreover, we show that under some
natural conditions satisfied by real-world datasets, it
is even possible to achieve R(û) = Ω(1) with a single
pass (Remark 2).

Our core technical argument is a reduction from the
optimization problem of maximizing R over a random
subspace to the problem of estimating the projection
length of a vector onto a random subspace. By using
our technique, we derive the first non-trivial guaran-
tee of R(û) for any number of passes for indefinite
matrices (Theorem 4), under mild conditions (Assump-
tion 1).

In addition, we propose an extension of the RSVD
method, called RandSum, by using a random matrix
sampled from Bernoulli(p) with mean p ∈ (0, 1). While
such a random matrix is rarely used in the literature
of random projections, we show that there exist appli-
cations (Bonchi et al., 2019; Tzeng et al., 2020) espe-

cially suitable for this technique, and we show several
properties of such a random matrix, which may be of
independent interest.

2 RELATED WORK

For lack of space, we provide a brief overview of the ex-
isting literature, focusing on the most relevant works to
our paper. For a general introduction on pass-efficient
algorithms for matrix approximations, we refer the
reader to Mahoney et al. (2011); Woodruff et al. (2014);
Martinsson and Tropp (2020).

The study of R(û) for pass-efficient algorithms can be
dated back to Kuczyński and Woźniakowski (1992) who
analyzed two classical methods: the power method and
the Lanczos method with random start. For any posi-
tive semidefinite matrix, they showed that the power
method (respectively, Lanczos method) with random
start, after q ≥ 2 iterations returns an approximated
top-eigenvector û with E [R(û)] ≥ 1 − 0.871 lnn

q−1 (re-
spectively, E [R(û)] ≥ 1− 2.575( lnn

q−1 )2).

The aforementioned methods are generalized to ran-
domized SVD (Halko et al., 2011b) and block-Krylov
methods (Musco and Musco, 2015), and a similar ad-
ditive analysis of R(û) by Musco and Musco (2015)
showed that for any positive semidefinite matrix, RSVD
(respectively, randomized block-Krylov method) using
O(nd) space (respectively, O(ndq) space) and after q
iterations, returns an approximate top-eigenvector û
with R(û) ≥ 1 − O( lnn

q ) (respectively, R(û) ≥ 1 −
O(( lnn

q )2)), with probability at least 1−e−Ω(d).1

The analysis of the previous works (Kuczyński and Woź-
niakowski, 1992; Musco and Musco, 2015) is tight, as
shown by Simchowitz et al. (2018) for a class of meth-
ods (which include RSVD and block Krylov), which
with high probability fail to find a vector û with
R(û) ≥ 23/24 within q = O(lnn) passes.

In the aforementioned works there are two limitations.
First, the bounds of Kuczyński and Woźniakowski
(1992) and Musco and Musco (2015) are additive, and
unfortunately require Ω(lnn) passes to be meaning-
ful. In contrast, our analysis provides a multiplicative
bound for R(û) and offers non-trivial guarantees for
any number of passes. Second, the applicability of the
methods of Kuczyński and Woźniakowski (1992) and
Musco and Musco (2015) is limited to positive semidef-
inite matrices. Instead, we provide a sharp analysis of
randomized SVD for positive semidefinite matrices and

1Musco and Musco (2015) showed that the aforemen-
tioned results hold with constant probability, which could
be improved to hold with probability 1− e−Ω(d) by using
stronger concentration results (Rudelson and Vershynin,
2010) in their proofs of Lemma 4 and Lemma 9.
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show that our proof techniques generalize to indefinite
matrices under mild conditions.

To complement our study, we briefly compare the mea-
sure R(û) with other classical metrics. Note here that,
even though it is possible to covert an error guarantee
for classical metrics (Xu et al., 2018; Drineas et al.,
2018; Ghashami et al., 2016; Chen et al., 2017; Musco
and Woodruff, 2017; Huang, 2018) into a lower bound
for R(û) by matrix perturbation theory (Stewart and
Guang Sun, 1990; Yu et al., 2015), the resulting bound
is additive and depends on the eigengap. We also note
that classical metrics typically compare the approx-
imation û to the top-eigenvector u1 of A, however,
such a comparison is not meaningful in our setting as
small distance between û and u1

2 is a sufficient but
not necessary condition for having large R(û).

3 PRELIMINARIES

Let N be the set of natural numbers excluding 0. Let R
be the set of real numbers, Sm−1 = {x ∈ Rm : xTx =
1}, and [m] = {1, . . . ,m}. Let range(M) denote the
column space of matrix M, and ‖·‖F and ‖·‖2 denote
the Frobenius norm and the spectral norm, respectively.
For a square matrix M, let λi(M) be its i-th largest
eigenvalue and ui(M) the corresponding eigenvector,
and let σi(M) be the i-th largest singular value. In all
subsequent sections, we use boldface A to denote the
input matrix, and abbreviate λi = λi(A), ui = ui(A),
and σi = σi(A). We use 〈·, ·〉 to denote the vector inner
product. Finally, we use 1n = [1, . . . , 1]T to denote the
n-dimensional vector of all 1’s and 0n = [0, . . . , 0]T to
denote the n-dimensional vector of all 0’s.

For simplicity, we assume that the input matrix A is
real-valued and symmetric, with λ1 > 0.

Definition 1 (Vector projection onto subspace). Let
v ∈ Rn be a nonzero vector and X ⊆ Rn be a non-
empty subspace. The projection length of v onto X is
given by cos θ(v,X ), where

θ(v,X ) = cos−1
(

max
x∈X

〈v,x〉
‖v‖2 ‖x‖2

)

is the projection angle. For a matrix X, we use θ(v,X)
to denote the projection angle of v onto the range of X.

It is well-known that projecting any vector v ∈ Rn onto
the range(S) of a random matrix S ∼ N (0, 1)n×d re-
sults in cos2 θ(v,S) ≈ d/n with high probability.

Lemma 1. (Hardt and Price, 2014) Let v ∈ Rn be
a nonzero vector and S ∼ N (0, 1)n×d, where n, d ∈ N

2More precisely, the distance between û and the eigen-
space associated with the largest eigenvalue λ1 of A.

Algorithm 1: RSVD(A,D, q, d)
Y← AqS where S ∼ D;
Y = QR;
B← QTAQ;
û = Q u1(B);
return û;

and n ≥ d. Then,

cos2 θ(v,S) = Θ
(
d

n

)
,

with probability at least 1− e−Ω(d).

For completeness, we provide the proof of Lemma 1
in Appendix A.1. The proof idea is to observe that
‖STv‖2
σ1(S) ≤ cos θ(v,S) ≤ ‖STv‖2

σd(S) and use the concen-
tration of the extreme singular values of a Gaussian
random matrix.

More generally, Lemma 1 holds for any random ma-
trix S whose range is uniformly distributed with re-
spect to the Haar measure on Grassmannian Gn,d
of all the d-dimensional subspaces of Rn, written as
range(S) ∼ Uniform(Gn,d). The reader may refer to
Achlioptas (2001) and Halko et al. (2011b) for other
choices of S and Vershynin (2018, Section 5) for a
general introduction to this phenomenon.

4 RANDOMIZED SVD

We briefly review the following variant of the random-
ized SVD (RSVD) algorithm, as proposed by Halko et al.
(2011b), and shown in Algorithm 1. The algorithm re-
turns an estimate û of the leading eigenvector u1 of the
input matrix A. It uses O(dn) space and requires q+ 1
passes over the matrix A, where q ∈ N.3 The distribu-
tion D is over Rn×d, and one particular instance of the
algorithm sets D = N (0, 1)n×d. The algorithm begins
with a random projection Y = AqS. The eigenvectors
of Aq are the same as A, but the eigenvalues of Aq

have much stronger decay. Thus intuitively, by taking
powers of the input matrix, the relative weight of the
eigenvectors associated with the small eigenvalues is
reduced, which is helpful in the basis identification for
input matrices whose eigenvalues decay slowly. After
projecting, the algorithm efficiently approximates the
top-eigenvector of A by

û ∈ argmax{vTAv : v ∈ range(Y) ∩ Sn−1}. (2)

3More precisely, RSVD requires q passes when d = 1 and
q + 1 passes when d > 1 as there is no need to compute
u1(B) when d = 1.
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Indeed, any v ∈ range(Y) of unit length can be written
as v = Qa for some a ∈ Sd−1, where Q is an n × d
orthonormal basis given by a QR decomposition of Y.
So it follows that

max
v∈range(Y)∩Sn−1

vTAv = max
a∈Sd−1

aTBa = λ1(B).

Thus, the vector û = Qu1(B) maximizes expression (2),
and u1(B) can be efficiently computed as the matrix
B is of dimension d× d.

4.1 Analysis of RSVD

We now derive lower and upper bounds for R(û), where
û is the output of Algorithm 1, and R(v) = λ−1

1
vTAv
vTv is

defined for any nonzero vector v ∈ Rn. Note that due
to expression (2), û maximizes R over the column space
range(Y) of Y. Since range(Y) = {Ya : a ∈ Rd}, we
can rewrite R(û) as

R(û) = max
v∈range(Y)\{0n}

R(v) = max
a∈Sd−1

R(Ya),

where the latter equality follows from the scale in-
variance of R. For notational convenience, we denote
Ra = R(Ya). After substituting Y = AqS in the
definition of R, we can evaluate Ra as

Ra = 1
λ1

(Sa)TA2q+1(Sa)
(Sa)TA2q(Sa) . (3)

Since A is real and symmetric, it has a real-valued
eigen-decomposition A =

∑n
i=1 λiuiuTi , with {ui}ni=1

being orthonormal. Hence Ak =
∑n
i=1 λ

k
i uiuTi , for any

k ∈ N, and we further expand Equation (3) as

Ra = 1
λ1

∑
i λ

2q+1
i 〈STui,a〉2∑

i λ
2q
i 〈STui,a〉2

=
∑
i α

2q+1
i 〈STui,a〉2∑

i α
2q
i 〈STui,a〉2

,

(4)
where αi = λi/λ1, for all i ∈ [n]. This is well-defined
since λ1 > 0. For our analysis of R(û) = maxa∈Sd−1 Ra,
we first consider the case when A is positive semi-
definite (p.s.d.). The proof strategy and arguments
serve as a building block for the indefinite case, dis-
cussed in Section 4.3.

4.2 Positive semidefinite matrices

Our first result, is a guarantee on the performance of
RSVD, asserted by the following.
Theorem 1. Let A be a positive semidefinite matrix
with λ1 > 0 and û = RSVD(A,N (0, 1)n×d, q, d) for
any q ∈ N. Then

R(û) =
(

Ω
(
d

n

)) 1
2q+1

holds with probability at least 1− e−Ω(d).

Proof. If A is p.s.d. we have αi ≥ 0, and thus (assuming
q ∈ N) we can repeatedly apply the Cauchy-Schwarz
inequality to Equation (4) and get

Ra ≥
∑
i α

2q
i 〈STui,a〉2∑

i α
2q−1
i 〈STui,a〉2

≥ · · · ≥
∑
i αi〈STui,a〉2∑
i〈STui,a〉2

.

(5)
The key observation is that by repeatedly using Equa-
tion (5) results in

n∑

i=1
〈STui,a〉2 ≥ R−1

a

n∑

i=1
αi〈STui,a〉2 ≥ · · ·

≥ R−(2q+1)
a

n∑

i=1
α2q+1
i 〈STui,a〉2

which implies

R2q+1
a ≥

∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1〈STui,a〉2
≥ 〈STu1,a〉2∑n

i=1〈STui,a〉2
.

(6)
Finally, by R(û) = maxa∈Sd−1 Ra and Definition 1 we
have

R(û)2q+1 ≥ max
a∈Sd−1

〈STu1,a〉2∑n
i=1〈STui,a〉2

= cos2 θ(u1,S),

(7)
and invoking Lemma 1 proves the claim.

We offer a few remarks. First note that the fact that
Equation (7) implies Theorem 1 can be proven by es-
timating Ra only on a = STu1

‖STu1‖2
, since we essentially

prove Lemma 1 on such a vector a — see our discussion
in Section 3 or Appendix A.1. Second, Equation (6)
can also be shown by Hölder’s inequality — see a sim-
plified proof of Theorem 1 in Appendix A.2. Third,
from Theorem 1, we see that increasing the number of
passes q makes R(û) approaching to 1 exponentially
fast, while increasing the dimension d leads to stronger
concentration of R(û) around the slowly increased
mean Ω((d/n)1/(2q+1)). Finally, we have:
Remark 1. The guarantee by Theorem 1 can be writ-
ten as R(û) = e−O(lnn/(2q+1)) ≥ 1 − O(lnn/q), and
hence, subsumes the result of Musco and Musco (2015).

One may wonder if our analysis is tight. The next
theorem confirms the tightness of Theorem 1 up to a
constant factor.
Theorem 2. For any q ∈ N, there exists a positive
semidefinite matrix A with λ1 > 0, so that for û =
RSVD(A,N (0, 1)n×d, q, d), it holds

R(û) = O
((

d

n

) 1
2q+1

)
,

with probability at least 1− e−Ω(d).
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We prove Theorem 2 in Appendix A.2 by considering
the following eigenvalue distribution {αi}:

1 = α1 > α2 = · · · = αn =
(
d

n

) 1
2q+1

. (8)

While our worst-case analysis is tight, Equation (8)
rarely happens in practice. Instead, real-world matri-
ces are often observed to have rapidly decaying singu-
lar values (Chakrabarti and Faloutsos, 2006; Eikmeier
and Gleich, 2017). To take this consideration into ac-
count, we introduce the following definition to capture
whetherA has at least power-law decay of its singular
values {σi}ni≥i0 .
Definition 2. Let

i0 =
{

minj∈J j if J 6= ∅,
n otherwise,

where J ⊆ [n] consists of all the integers j ∈ [n]
such that there exists γ > 1/q and C > 0 satisfying
σi/σ1 ≤ C · i−γ , for all i ≥ j.
Theorem 3. Let A be a positive semidefinite matrix,
û = RSVD(A,N (0, 1)n×d, q, d) for any q ∈ N, and i0
be defined as in Definition 2. Then

R(û) = Ω
((

d

d+ i0

) 1
2q+1

)

holds with probability at least 1− e−Ω(d).

The proof of Theorem 3 can be found in Appendix A.2.
The idea is to estimate Ra on a = STu1

‖STu1‖2
and check

two possible cases. If i0 is large, the analysis reduces to
Theorem 1, while if i0 is small, we invoke Bernstein-type
inequalities and show that Ra = Ω(1) with high proba-
bility. So, the overall guarantee of Ra is determined by
the former case, and recalling R(û) ≥ maxa∈Sd−1 Ra
yields Theorem 3.

Remark 2. Theorem 3 subsumes Theorem 1 up to a
constant factor as d+ i0 = O(n), and provides a much
better guarantee if A has singular values having at
least power-law decay. In particular, if i0 = O(d) then
R(û) = Ω(1) with high probability, even with a single
pass when q = 1 and d = 1.

4.3 Indefinite matrices

If A has negative eigenvalues, the Inequality (5) in the
proof of Theorem 1 is not valid anymore. Nevertheless,
we expect to have a guarantee of R(û) similar to that
of Theorem 1 if the negative eigenvalues are not too
large. We introduce the following technical assumption.

Assumption 1. Assume there exists a constant κ ∈
(0, 1] such that

∑n
i=2 λ

2q+1
i ≥ κ∑n

i=2|λi|2q+1.

An important observation is that Theorems 1 and 3
can be proved by estimating Ra only on one specific
vector a = STu1

‖STu1‖2
; see Section 4.2. Hence, it suffices

to use the following lemma (proved in Appendix A.3)
to generalize our results in Section 4.2 to indefinite
matrices satisfying Assumption 1.

Lemma 2. Assume that matrix A satisfies Assump-
tion 1 and S ∼ N (0, 1)n×d. There exists a con-
stant cκ ∈ (0, 1] such that with probability at least
1− e−Ω(

√
dκ2), it holds

n∑

i=1
λ2q+1
i 〈STui,STu1〉2 ≥ cκ

n∑

i=1
|λi|2q+1〈STui,STu1〉2.

Lemma 2 essentially states that any indefinite matrix
A satisfying Assumption 1 has Ra = Θ(R̄a) on such a
vector a = STu1

‖STu1‖2
, where

R̄a =
∑n
i=1|αi|2q+1〈STui,a〉2∑n
i=1 α

2q
i 〈STui,a〉2

. (9)

The next theorem, proven in Appendix A.3, follows
from Lemma 2 and the proof of Theorem 3.

Theorem 4. Assume that matrix A satisfies Assump-
tion 1. Let û = RSVD(A,N (0, 1)n×d, q, d) for any
q ∈ N. Then,

R(û) = Ω
(
cκ

(
d

d+ i0

) 1
2q+1

)
,

with probability at least 1− e−Ω(
√
dκ2).

Remark 3. As discussed in Section 3, all the theo-
rems shown in this section, i.e., Theorems 1, 2, 3,
and 4, can be easily extended to any random matrix S
satisfying S ∼ Uniform(Gn,d).

5 EXTENSION: COMBINING
WITH PROJECTION FROM
BERNOULLI

In this section, we propose an extension of Randomized
SVD, which we name RandSum, and show as Algo-
rithm 2. In RandSum, half of the columns of S are
replaced with i.i.d. samples from a Bernoulli distri-
bution with mean p ∈ (0, 1).4 We can show that the
guarantee achieved by the RandSum algorithm for R(û)
is no worse than that by the RSVD algorithm, since

4Bernoulli(p)n×d does not belong to the class of distri-
butions mentioned in Section 3 to which Lemma 1 applies.
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Algorithm 2: RandSum (A, q, d, p)
S1 ∼ N (0, 1)n×d d2 e, S2 ∼ Bernoulli(p)n×b d2 c;
S←

[
S1 S2

]
;

return RSVD(A,S, q, d);

half of the coulmns of S come from a normal distri-
bution. To study the additional benefits due to the
submatrix drawn from the Bernoulli, we derive the fol-
lowing lemma as an analog of Lemma 1 for a Bernoulli
random matrix. The proof is in Appendix B.1.

Lemma 3. Let v ∈ Sn−1, d ≤ n/3, and S ∼
Bernoulli(p)n×d for a constant p ∈ (0, 1) Then,

cos2 θ(v,S) = Ω
(

max{1, 〈v,1n〉2}
n

)

holds with probability at least 1− e−Ω(d).

The next theorem, which holds for any p.s.d. matrix A,
is a direct consequence of Lemmas 1 and 3 and applying
the techniques introduced in Theorem 1. The proof is
in Appendix B.2.

Theorem 5. Let A be a positive semindefinite matrix
with λ1 > 0, and û = RandSum(A, q, d, p) for any
constant p ∈ (0, 1) and integer d ≥ 2. Then,

R(û) =
(

Ω
(

max{d, 〈u1,1n〉2}
n

)) 1
2q+1

holds with probability at least 1− e−Ω(d).

Theorem 5 shows that R(û) = Θ(1) with high proba-
bility when 〈u1,1n〉2 = Θ(n), which is acheviable as
the maximum possible value of 〈u1,1n〉2 is n.

Remark 4. For certain tasks such as conflicting-group
detection (Bonchi et al., 2019; Tzeng et al., 2020), one
could expect to have large 〈u1,1n〉2, since 〈u1,1n〉2
naturally corresponds to the size of the subgraph, which
is located by u1.5 However, for tasks such as community
detection, 〈u1,1n〉2 ≈ 0 is often the case.

Finally, we consider the generalization of Theorem 5
to indefinite matrices. To derive Lemma 4, the analog
of Lemma 2 for Bernoulli random matrices, we intro-
duce Assumption 2, where (i) is merely for the ease
of presentation and (ii) generalizes Assumption 1 as
ξi = 1 for S ∼ N (0, 1)n×d. The proof of Lemma 4 can
be found in Appendix B.3.

5We say that u1 is located around some indices I ⊆ [n]
if the magnitude of (u1)i for any i ∈ I is much larger than
those not in I.

Assumption 2. Assume that (i) 〈u1,1n〉2 = Ω(1) and
(ii) there exists a constant κ′ ∈ (0, 1] such that

n∑

i=2
λ2q+1
i ξi ≥ κ′

n∑

i=2
|λi|2q+1ξi,

where ξi = E
[
〈STui, 1d√

d
〉2
]
, for all i ∈ [n].

Lemma 4. Assume that A satisfies Assumption 2. Let
S ∼ Bernoulli(p)n×d for a constant p ∈ (0, 1). There
exists a constant cκ′ ∈ (0, 1], such that

n∑

i=1
λ2q+1
i 〈STui,STu1〉2 ≥ cκ′

n∑

i=1
|λi|2q+1〈STui,STu1〉2,

with probability at least 1− e−Ω(
√
dκ′2).

Our last result, Theorem 6, immediately follows from
Theorems 4 and 5 and Lemma 4. The proof and the
full version are in Appendix B.3.

Theorem 6. Assume that A satisfies Assumptions 1
and 2. Let û = RandSum(A, q, d, p) for any constant
p ∈ (0, 1) and any q ∈ N, and i0 be defined as in
Definition 2. Then,

R(û) = Ω
((

max
{

d

d+ i0
,
〈u1,1n〉2

n

}) 1
2q+1

)

holds with probability at least 1− e−Ω(
√
d). (For the full

dependency on κ, κ′, cκ, and cκ′ , see Appendix B.3.)

6 EXPERIMENTS

In this section we evaluate the randomized algorithms
we analyze in this paper using synthetic and real-world
datasets. In Section 6.1, we use synthetic datasets to
benchmark the RSVD algorithm with respect to the
R measure, and study the effect of its parameters. In
Section 6.2, we employ RSVD and RandSum as sub-
routines of spectral approaches for specific knowledge-
discovery tasks on real-world datasets.

Settings. We use LanczosMethod, provided by the
ARPACK library (Lehoucq et al., 1998), for comput-
ing λ1, which is required for measuring R. We fix q = 1
while varying d ∈ {1, 5, 10, 25, 50} to study the effect
of d, and fix d = 10 while varying q ∈ {1, 2, 4, 8, 16}
to study the effect of q. Each setting is repeated
100 times and the average is reported. All experi-
ments are performed on an Intel Core i5 machine at
1.8GHz with 8GBRAM. All methods are implemented
in Python 3.7.4.6

6The code is available at the github repo https://bit.
ly/34dI4Nl.
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Figure 1: Different types of eigenvalue distributions.

6.1 Evaluation with synthetic data

We consider different types of eigenvalue distributions,
also illustrated in Figure 1. The size of the input matrix
is set to n = 10 000 and i0 = 100 (see Definition 2).
For all types of synthetic matrices we set λi = i−0.01,
for i < i0, and the rest of the eigenvalues {λi}ni≥i0 are
specified as follows:

• Type 1: λi = i−1 for i ≥ i0.
• Type 2: λi = i−

1
7 for i ≥ i0.

• Type 3: λi =
{
i−

1
3 if i ∈ [i0, 2n

3 ],
−(i− 2n

3 )−1 if i > 2n
3 .

• Type 4: λi =





i−
1
2 if i ∈ [i0, n2 ],

− 9
10 (i− n

2 )− 1
2 if i ∈ (n2 , n− i0),

− 9
10 i
−0.01 if i ≥ n− i0.

For the value of κ in Assumption 1, we compute κ with
q = 1 and get: κ = 1 for Type 1 and Type 2, κ = 0.99
for Type 3, and κ = 0.22 for Type 4. For each type of
eigenvalue distribution, we generate a random n × n
input matrix by sampling the eigenvectors uniformly
from the space of orthogonal matrices.

Figure 2 shows the value of R for the vector û com-
puted by RSVD(A,N (0, 1)n×d, q, d), and the speedup
in running time against LanczosMethod.

For matrices of Type 1, it is expected that RSVD per-
forms the best as the eigenvalues of such matrices have
the fastest decay and κ = 1.

For matrices of Type 2, we notice that R(û) is very
close to 1 when q ≥ 4. This result is better than what
our analysis predicts, since by Theorem 3 it holds that
R(û) = Ω(1) with high probability after q = 7 (since
the decay rate of Type 2 is 1/7).

For matrices of Type 3, despite being indefinite, the
magnitude of the negative eigenvalues is almost negli-
gible (κ = 0.99). By Theorem 4 and Lemma 2, R(û) is
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Figure 2: The value of R(û) for û computed by
RSVD(A,N (0, 1)n×d, q, d). Top row shows dependence
with d. Bottom row shows dependence with q. The
speedup is measured against LanczosMethod.

nearly identical to its counterpart R̄ (see (9)), so it is
expected that RSVD performs better on data of Type 3
than on data of Type 2, as the eigenvalue-distribution
decay rate is faster.

For matrices of Type 4, although the eigenvalues decay
faster than those of Type 3 matrices, the magnitudes of
the negative eigenvalues are much larger (κ = 0.22). By
Theorem 4 and Lemma 2, R(û) is upper-bounded by a
factor of κ when increasing q, and the results indeed
show that the performance of RSVD is worse for Type
4 matrices, compared to Type 3 (κ = 0.99).

6.2 Applications on real-world data

We use publicly-available networks from the SNAP
collection (Leskovec and Krevl, 2014). Statistics of the
datasets are listed in Tables 1 and 2.

6.2.1 Detection of 2 conflicting groups

The problem of 2-conflicting group detection aims to
find two optimal groups that maximize the polarity
objective P (x) = xTAx/xTx, where A is the signed
adjacency matrix and x ∈ T = {0,±1}n\{0n}. Bonchi
et al. (2019) propose a tight O(n1/2)-approximation
algorithm based on the leading eigenvector u1. In
Appendix D we show that applying their approach
on the approximated top-eigenvector û yields an
O(n1/2/R(û))-approx algorithm.

Datasets. The statistics of datasets we use for this
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Table 1: Datasets for conflicting group detection.

WikiVot Referendum Slashdot WikiCon
|V | 7 115 10 884 82 140 116 717
|E| 100 693 251 406 500 481 2 026 646
(γ, i0) (4.6, 15) (4.5, 16) (5.3, 17) (2.8, 22)
κ 0.397 0.620 0.204 0.034
cos θ(u1,1n) 0.378 0.399 0.194 0.193

Table 2: Datasets for community detection.

FBArtist Gnutella31 YouTube RoadCA
|V | 50 515 62 586 1 134 890 1 965 206
|E| 819 306 147 892 2 987 624 2 766 607

experiment are listed in Table 1. We observe that all
datasets have rapidly-decaying singular values. To mea-
sure the parameters γ and i0 (see Definition 2), due to
memory limitations, we compute the top 1 000 eigen-
values (in magnitude) of its signed adjacency matrix
by LanczosMethod, and fit the parameters (γ, i0) by an
MLE-based method (Clauset et al., 2009). Moreover,
we test the validity of Assumption 1 by computing κ
with q = 1, and also computing 〈u1,1n〉.
Results. Figure 3 illustrates the results obtained
by applying the spectral algorithm of Bonchi et al.
(2019) on the top-eigenvector û returned by RSVD
and RandSum. Due to the value of κ, the result is
that, as expected, both algorithms perform the best
on Referendum. Due to the value of cos θ(u1,1n), the
superiority of RandSum over RSVD is, as expected,
more pronounced on WikiVot and Referendum than on
Slashdot and WikiCon.

6.2.2 Detection of 2 communities

For the task of detecting two communities in a graph,
Newman (2006) proposed an efficient algorithm by
maximizing the modularity score Q(x) = xTMx/4|E|,
where Mi,j = Ai,j − deg(i) deg(j)/2|E|, A is the adja-
cency matrix of the input graph, and the two commu-
nities are determined by the sign of the top eigenvector
of M.

Datasets. The datasets used for evaluating this task
are listed in Table 2. As the modularity matrix M is
dense and the networks are large, LanczosMethod runs
out-of-memory on our machine when trying to compute
the top eigenvalues, and hence, unlike Table 1, the
number κ and the parameters (γ, i0) are not displayed
in Table 2.

Results. Figure 4 shows the results by applying
the spectral algorithm of Newman (2006) on the top-
eigenvector û returned by RSVD and RandSum. No-
tice that on this task, RandSum has no advantage over
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Figure 3: Results on the task of detecting 2 conflicting
groups. Results for RSVD (resp. RandSum) are plotted
with a solid (resp. dashed) line.
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Figure 4: Results on the task of detecting 2 communi-
ties. Results for RSVD (in solid line) and RandSum (in
dotted line) are nearly the same.

RSVD since M1n = 0, and thus 〈u1,1n〉 = 0n if λ1 ≥ 0.
When fixing d = 10 and increasing q, the modularity
scores converge much faster on FBArtist and YouTube
than on Gnutella31 and RoadCA, suggesting that it
could be hard to discover community structures in
Gnutella31 and RoadCA. This is an expected result.
For Gnutella (Gnutella31) the design of the network
prevents the formation of large communities so as to
enable reliable communication For the road network of
California (RoadCA) the reason is the grid-like struc-
ture of the network (Leskovec et al., 2009).

7 CONCLUSION

In this paper, we study the problem of approximat-
ing the leading eigenvector of a matrix with limited
number of passes. The problem is of interest in many
applications. We provide a tight theoretical analysis
of the popular randomized SVD method, with respect
to the metric R(û) = λ−1

1 ûTAû/ûT û. Our results
substantially improve the analysis of randomized SVD
in the regime of o(lnn) passes and recover the analysis
of prior works in the regime of Ω(lnn) passes. A new
technique is introduced to transform the problem of
maximizing R(û) into a well-studied problem in the
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literature of high-dimensional probability.

Our work opens several interesting directions. First,
it is an open problem to characterize the fundamen-
tal limit of maximizing R(û) for any algorithm with
fixed number of pass and O(n) space. Second, our
results may be extended in different ways. For ex-
ample, we may relax the requirement on the input
matrix from symmetric to stochastic, so as to analyze
approximations of PageRank (Page et al., 1999). Or,
we may extend RandSum to use any non-centered sub-
gaussian distribution for drawing S2, and we conjecture
this yields similar results. Another direction is to ex-
tend our analysis to top-k eigenvectors; since there
are already several methods for computing top-k eigen-
vectors (Halko et al., 2011b; Mackey, 2008; Allen-Zhu
and Li, 2016), the most challenging part is to define
the proper metric to maximize, as a generalization
of R(û).
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Supplementary Material:
Improved analysis of randomized SVD for top-eigenvector

approximation

A Proofs of RSVD

A.1 Large deviation of projection length for Gaussian random matrix

This subsection is devoted to proving Lemma 1 restated below.

Lemma 1. Let v ∈ Rn be a nonzero vector and S ∼ N (0, 1)n×d where n, d ∈ N and n ≥ d. Then,

cos2 θ(v,S) = Θ
(
d

n

)

with probability at least 1− e−Ω(d).

This lemma stems from the observations that σ1(STv)
σ1(S) ≤ cos θ(v,S) ≤ σ1(STv)

σd(S) and the distribution of STv
‖v‖2

is
exactly N (0, 1)d×1. The proof relies on the union bound of concentration inequalities on the extreme singular
values of Gaussian random matrix, Lemma 5, and Lemma 6. Similar inequalities shown in the previous works,
e.g. Hardt and Price (2014), also rely on this observation.

Lemma 5 (Theorem 4.4.5 (Vershynin, 2018)). Let S be a n× d random matrix whose entries are i.i.d. zero-mean
subgaussian r.v.’s.

For all t > 0, P
[
σ1(S) ≥ c (

√
n+
√
d+ t)

]
≤ 2e−t

2
,

where c > 0 depends linearly only on ‖S1,1‖ψ2
(see Definition 4 of ψ2-norm in Appendix C.1).

Lemma 6 (Theorem 1.1 (Rudelson and Vershynin, 2009)). Let S be a n× d random matrix whose entries are
i.i.d. zero-mean subgaussian r.v.’s and n ≥ d.

For all δ > 0, P
[
σd(S) ≤ δ (

√
n−
√
d− 1)

]
≤ (c1δ)n−d+1 + e−c2n,

where c1, c2 > 0 have polynomial dependence on ‖S1,1‖ψ2
(see Definition 4 of ψ2-norm in Appendix C.1).

Proof of Lemma 1: For the simplicity of presentation, we assume ‖v‖2 = 1 as cos θ(·, ·) is scale-invariant.

(i) cos θ(v,S) = Ω(
√
d/n):

Recall that cos θ(v,S) = maxa∈Sd−1
〈v,Sa〉
‖Sa‖2

. Let a = STv/
∥∥STv

∥∥. We get

cos θ(v,S) ≥ 〈v,SSTv〉
‖SSTv‖2

=
∥∥STv

∥∥2
2

‖SSTv‖2
≥
∥∥STv

∥∥
2

σ1(S) = σ1(STv)
σ1(S) ,

where the second inequality directly follows from the definitions of the largest singular value. Because STv ∼
N (0, 1)d×1, invoking Lemma 6 with δ = e−1 yields that P

[
σ1(STv) ≥

√
d/e
]
≥ 1− e−Ω(d). Meanwhile, Lemma 5
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with t =
√
n −
√
d implies that P [σ1(S) ≤ 2c

√
n] ≥ 1 − e−Ω(n). We hence conclude (i) by applying the union

bound.

(ii) cos θ(v,S) = O(
√
d/n):

Due to σd(S) ≤ ‖S‖2 and 〈v,Sa〉 ≤
∥∥STv

∥∥
2 ‖a‖2 = σ1(STv), for all a ∈ Sd−1,

cos θ(v,S) = max
a∈Sd−1

〈v,Sa〉
‖Sa‖2

≤ σ1(STv)
σd(S) .

For the denominator, Lemma 6 with δ = e−1 is applied to permit that P
[
σd(S) ≥

√
n−
√
d−1

e

]
≥ 1− e−Ω(n−d+1)−

e−Ω(n). For the numerator, as STv ∼ N (0, 1)d×1, Lemma 5 with t =
√
d shows that P

[
σ1(STv) ≤ 2

√
d
]
≥

1− e−Ω(d). Thus, (ii) holds by applying the union bound. �

A.2 RSVD with positive semidefinite matrices

Lemma 7. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two vectors in Rn satisfying (i) there exists i ∈ [n] s.t.
xiyi 6= 0, and (ii) there exists j ∈ [n] s.t. yj 6= 0. Then for all q ∈ N,

∑n
i=1 |xi|

2q+1 y2
i∑n

i=1 |xi|
2q y2

i

≥
(∑n

i=1 |xi|
2q y2

i∑n
i=1 y2

i

) 1
2q

.

Proof For any n-dimensional vectors a = (a1, . . . ,an), v = (b1, . . . ,bn) satisfying that (i)′ there exists i ∈ [n]
s.t. aibi 6= 0, and (ii)′ there exists j ∈ [n] s.t. bj 6= 0, Hölder’s inequality implies that

( ∑n
i=1|ai|r∑n
i=1|aibi|

) 1
r

≥
(∑n

i=1|aibi|∑n
i=1|bi|s

) 1
s

, (10)

where r, s ∈ [1,∞] with 1/r+ 1/s = 1. Let ai = |xi|2qy2/r
i and bi = |yi|2/s, for all i ∈ [n], then (i) and (ii) imply

(i)′ and (ii)′ respectively. Hence, (10) with r = (2q + 1)/2q, s = 2q + 1 gives us that




∑n
i=1

(
|xi|2q y

4q
2q+1
i

) 2q+1
2q

∑n
i=1 |xi|

2q y2
i




2q
2q+1

≥




∑n
i=1 |xi|

2q y2
i

∑n
i=1

(
y

2
2q+1
i

)2q+1




1
2q+1

.

We conclude this lemma by rearranging the above inequality. �

Theorem 1. Let A be a positive semidefinite matrix with λ1 > 0 and û = RSVD(A,N (0, 1)n×d, q, d) for any
q ∈ N. Then,

R(û) =
(

Ω
(
d

n

)) 1
2q+1

holds with probability at least 1− e−Ω(d).

Proof Thanks to Lemma 1, the proof follows if the following inequality holds almost surely

R(û)2q+1 ≥ max
a∈Sd−1

〈STu1,a〉2∑n
i=1〈STui,a〉2

= cos2 θ(u1,S), (11)

where the equation is due to Definition 1. We show (11) by Lemma 7 and the alternating form of R(û) follows by
(4) in Section 4.2,

R(û) = max
a∈Sd−1

Ra = max
a∈Sd−1

∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1 α
2q
i 〈STui,a〉2

. (12)
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Let xi = αi and yi = 〈STui,a〉, for all i ∈ [n], because 〈STu1, a〉 6= 0 a.e., the conditions of Lemma 7, (i) and
(ii)., hold a.e.. Therefore, it holds almost surely that

Ra =
∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1 α
2q
i 〈STui,a〉2

≥
(∑n

i=1 α
2q
i 〈STui,a〉2∑n

i=1〈STui,a〉2

) 1
2q

=
( ∑n

i=1 α
2q
i 〈STui,a〉2∑n

i=1 α
2q+1
i 〈STui,a〉2

∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1〈STui,a〉2

) 1
2q

=
(
R−1

a

∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1〈STui,a〉2

) 1
2q

,

where the last equation follows from (4) in Section 4.2 again. Rearranging the above inequality, we get that

R2q+1
a ≥

∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1〈STui,a〉2
≥ 〈STu1,a〉2∑n

i=1〈STui,a〉2
, a.e., (13)

where the second inequality is leveraged the fact that
∑
i 6=1 α

2q+1
i 〈STui,a〉2 ≥ 0. (13) and the definition

R(û) = maxa∈Sd−1 Ra imply (11) as desired and hence the proof completes. �

Theorem 2. For any q ∈ N, there exists a positive semi-definite matrix A with λ1 > 0, so that for û =
RSVD(A,N (0, 1)n×d, q, d), it holds

R(û) = O
((

d

n

) 1
2q+1

)
,

with probability at least 1− e−Ω(d).

Proof Let A be a diagonal matrix with A1,1 = 1 and Ai,i = (d/n)
1

2q+1 , for all i 6= 1. Apparently, A =
eT1 e1 +

∑n
i=2 αeTi ei, where α = (d/n)

1
2q+1 and {e1, . . . , en} is the canonical basis in Rn. As discussed in Section 4,

R(û) = maxa∈Sd−1 Ra and the alternating expression of Ra, (4) in Section 4.2, can be rewritten as

for all a ∈ Sd−1, Ra = 〈STe1,a〉2
〈STe1,a〉2 +

∑n
i=2 α

2q〈STei,a〉2
+

∑n
i=2 α

2q+1〈STei,a〉2
〈STe1,a〉2 +

∑n
i=2 α

2q〈STei,a〉2
. (14)

On the one hand, as 1 > (d/n)
2q

2q+1 = α2q, the first term in (14) is upper bounded as:

〈STe1,a〉2
〈STe1, a〉2 +

∑n
i=2 α

2q〈STei,a〉2
≤ 〈STe1,a〉2∑n

i=1 α
2q〈STei,a〉2

≤ α−2q cos2 θ(e1,S), (15)

where the second inequality follows directly from the definition of cos2 θ(e1,S). On the other hand, the second
term in (14) is upper bounded as:

∑n
i=2 α

2q+1〈STei,a〉2
〈STe1,a〉2 +

∑n
i=2 α

2q〈STei,a〉2
≤
∑n
i=2 α

2q+1〈STei,a〉2∑n
i=2 α

2q〈STei,a〉2
= α. (16)

By substituting (15) and(16) into (14), we derive that Ra ≤ α−2q cos2 θ(e1,S) + α, for all a ∈ Sd−1, which
provides an upper bound of R(û). Finally, invoking Lemma 1, which states that cos2 θ(e1,S) = Θ(d/n) with
high probability, and recalling that α = (d/n)

1
2q+1 yields the conclusion. �

Theorem 3. Let A be a positive semi-definite matrix, û = RSVD(A,N (0, 1)n×d, q, d) for any q ∈ N, and i0 be
defined as in Definition 2 in Section 4.2. Then

R(û) = Ω
((

d

d+ i0

) 1
2q+1

)

holds with probability at least 1− e−Ω(d).
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Proof If i0 = n, then we subsume the result by Theorem 1 directly. Hence we assume that i0 < n below.

By applying Corollary 1 in Appendix C.2 with δ = 1
3 ,x = u1, we have probability 1− e−Ω(d) that

2d
3 ≤

∥∥STu1
∥∥2

2 ≤
4d
3 , (17)

which directly implies that STu1 6= 0. In the following, we consider (i).
∑i0
i=1 α

2q
i 〈STui,STu1〉2 >∑n

i=i0+1 α
2q
i 〈STui,STu1〉2; (ii). otherwise. Then, we show the claimed lower bound in (i). and (ii). sep-

arately by invoking Lemma 12 in Appendix C.3, which gives the bounds for the weighted sum with high probability.

(i).
∑i0
i=1 α

2q
i 〈STui,STu1〉2 >

∑n
i=i0+1 α

2q
i 〈STui,STu1〉2.

Roughly speaking in (i), the top i0 terms dominate, hence one can expect the similar proof for Theorem 1 without
the last n− i0 terms will help us reason. The alternating form of R(û) follows by (4) in Section 4.1,

R(û) = max
a∈Sd−1

∑n
i=1 α

2q+1
i 〈STui,a〉2∑n

i=1 α
2q
i 〈STui,a〉2

≥
∑n
i=1 α

2q+1
i 〈STui,STu1〉2∑n

i=1 α
2q
i 〈STui,STu1〉2

>

∑i0
i=1 α

2q+1
i 〈STui,STu1〉2

2
∑i0
i=1 α

2q
i 〈STui,STu1〉2

, (18)

where the first inequality comes from the fact that STu1/
∥∥STu1

∥∥
2 ∈ Sd−1 and the last one uses that∑n

i=i0+1 α
2q+1
i 〈STui,STu1〉2 ≥ 0 and (i). From (18), we repeat the deduction of (6) in Section 4.1, by viewing

Ra as 2R(û), αi = αi for i = 1, . . . , i0, αi = 0 for i > i0, and 〈STui,STa〉2 = 〈STui,STu1〉2 to conclude that (an
alternative way is to use Lemma 7 as shown Appendix A.2)

∑i0
i=1 α

2q+1
i 〈STui,STu1〉2∑i0

i=1 α
2q
i 〈STui,STu1〉2

>

(
(2R(û))−1

∑i0
i=1 α

2q+1
i 〈STui,STu1〉2∑i0

i=1〈STui,STu1〉2

) 1
2q

. (19)

Rearranging the inequalities (18) and (19), we get

(2R(û))2q+1 >
〈STu1,STu1〉2∑i0
i=1〈STui,STu1〉2

≥ 4d2

16d2 + 9
∑

1≤i≤i0〈STui,STu1〉2
, (20)

where the last inequality is a consequence of (17). By applying Lemma 12 in Appendix C.3 with ε = 1
3 , δ = 1

3 ,
β1 = . . . = βi0 = 1 and βi0+1 = . . . = βn = 0, then we have probability 1− e−Ω(d) that

∑
1≤i≤i0〈STui,STu1〉2 ≤

16di0
9 . Together with (20), the proof is derived by the union bound.

(ii).
∑i0
i=1 α

2q
i 〈STui,STu1〉2 ≤

∑n
i=i0+1 α

2q
i 〈STui,STu1〉2.

As STu1/
∥∥STu1

∥∥
2 ∈ Sd−1, (4) in Section 4.2 yields that

R(û) ≥
∑n
i=1 α

2q+1
i 〈STui,STu1〉2∑n

i=1 α
2q
i 〈STui,STu1〉2

≥ 〈STu1,STu1〉2
2
∑n
i=i0+1 α

2q
i 〈STui,STu1〉2

≥ 2d2

9
∑n
i=i0+1 α

2q
i 〈STui,STu1〉2

,

where the second inequality is due to (ii); the last is a result of (17) . By Lemma 12 with δ = d, ε = 1
2 ,

β2 = . . . = βi0 = 0, and βi = α2q
i for all i = i0 + 1, . . . , n, we have

P

[
n∑

i=i0+1
α2q
i 〈STui,STu1〉2 ≤

3d(d+ 1)
2

n∑

i=i0+1
α2q
i

]
≤ 1− e−Ω(d).

By Definition 2, since γ > 1/q,
n∑

i=i0+1
α2q
i ≤ C

∫ ∞

1
x−2qγdx < C

∫ ∞

1
x−2dx = C.

Hence, the union bound yields R(û) = Ω(1) with probability at least 1− e−Ω(d). �
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A.3 RSVD with indefinite matrices

Assumption 1 is restated here for convenience.

Assumption 1. Assume there exists a constant κ ∈ (0, 1] such that
∑n
i=2 λ

2q+1
i ≥ κ∑n

i=2|λi|2q+1.

Lemma 2. Assume that matrix A satisfies Assumption 1 and S ∼ N (0, 1)n×d. There exists a constant cκ ∈ (0, 1]
such that

P

[
n∑

i=1
λ2q+1
i 〈STui,STu1〉2 ≥ cκ

n∑

i=1
|λi|2q+1〈STui,STu1〉2

]
≥ 1− e−Ω(

√
dκ2).

Proof Recall αi = λi/λ1 for all i ∈ [n] and introduce I+ = {i ∈ [n]\{1} : αi > 0} and I− = {i ∈ [n] : αi < 0}.
It is natural to assume I− 6= ∅, as otherwise this lemma trivially holds. Also, for simplicity κ ∈ (0, 1] is assumed
to be the number such that

∑n
i=2 α

2q+1
i = κ

∑n
i=2|αi|2q+1 (this number can be found always).

Apparently in both sums of interest,
∑n
i=1 α

2q+1
i 〈STui,STu1〉2 and

∑n
i=1|αi|2q+1〈STui,STu1〉2, the largest

single term is the first one, 〈STu1,STu1〉2, so our initial step is to derive its high probability bound. Applying
Corollary 1 in Appendix C.2 with x = u1 and δ = 1−

√
1− κ/4 (resp. δ =

√
1 + κ/4− 1) for the lower-tail (resp.

upper-tail) yields
P
[
d2
(

1− κ

4

)
≤ 〈STu1,STu1〉2 ≤ d2

(
1 + κ

4

)]
≥ 1− e−Ω(dκ2). (21)

However, as the other terms highly depend on the decay rate of eigenvalues, to derive a high probability bound,
we need to carefully choose the parameters when applying concentration inequalities. In what follows, we
define s+ =

∑
i∈I+

α2q+1
i and s− =

∑
i∈I− |αi|2q+1, and then prove in two cases: either (i). s− = Ω(

√
d) or (ii).

s− = o(
√
d).

(i). s− = Ω(
√
d). Applying the lower-tail (resp. upper tail) of Lemma 12 in Appendix C.2 with δ = ε =

1−
√

1− κ/2 (resp. δ = ε =
√

1 + κ/2− 1), βi = αi for i ∈ I+, and βi = 0 otherwise, we get

P


d
(

1− κ

2

)
s+ ≤

∑

i∈I+

α2q+1
i 〈STui,STu1〉2 ≤ d

(
1 + κ

2

)
s+


 ≥ 1− e−Ω(

√
dκ2). (22)

In addition, using Lemma 12 with δ = ε =
√

1 + κ/2 − 1 in Appendix C.2 , βi = |αi| for i ∈ I−, and βi = 0
otherwise, we derive

P


∑

i∈I−
|αi|2q+1〈STui,STu1〉2 ≤ d

(
1 + κ

2

)
s−


 ≥ 1− e−Ω(

√
dκ2). (23)

Now, we prove our assertion. The lower-tails in (21)(22) and the upper-tail in (23) implies
n∑

i=1
α2q+1
i 〈Sui,Su1〉2 ≥ d

(
d(1− κ

4 ) + (1− κ

2 )s+ − (1 + κ

2 )s−
)

(a)= d

(
d(4− κ)

4 + κ(s+ + s−)
2

)

(b)
≥ κ

3

(
d
(
d(1 + κ

4 ) + (1 + κ

2 )(s+ + s−)
)) (c)
≥ κ

3

n∑

i=1
|αi|2q+1〈Sui,Su1〉2,

where (a) is due to (1− κ)s+ = (1 + κ)s− (rearranged from
∑n
i=2 α

2q+1
i = κ

∑n
i=2|αi|2q+1), (b) is easily checked

by comparing the coefficients, and (c) follows from the upper-tails in (21)(22)(23). Therefore, a union bound
completes the proof with cκ = κ

3 in this case.
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(ii). s− = o(
√
d). This is equivalent to say that there exists a constant c > 0 such that s− ≤ c

√
d. Notice that

from
∑n
i=1 α

2q+1
i 〈STui,STu1〉2 to

∑n
i=1|αi|2q+1〈STui,STu1〉2, only the term with index i ∈ I− changes its sign

and we show our assertion in the sense that the terms with indices in I− do not affect too much with high probability.

Invoking Lemma 12 in Appendix C.3 with δ = κ
√
d

8c , ε = δ
1+δ , βi = |αi| for i ∈ I−, and βi = 0 otherwise , we get

P


∑

i∈I−
|αi|2q+1〈STui,STu1〉2 ≤ d

(
1 + κ

√
d

4c

)
s−


 ≥ 1− e−Ω(

√
dκ2). (24)

On the one hand, the lower-tail in (21) and the upper-tail in (24) yield that with high probability

n∑

i=1
α2q+1
i 〈Sui,Su1〉2 ≥ d2

(
1− κ

4

)
− d

(
1 + κ

√
d

4c

)
s− +

n∑

i∈I+

α2q+1
i 〈Sui,Su1〉2. (25)

On the other hand, the upper-tails in (21) and (24) imply that with high probability

n∑

i=1
|αi|2q+1〈Sui,Su1〉2 ≤ d2(1 + κ

4 ) + d(1 + κ
√
d

4c )s− +
n∑

i∈I+

α2q+1
i 〈Sui,Su1〉2. (26)

Finally with a union bound on (25) and (26) , we have probability at least 1 − e−Ω(
√
dκ2) that for any d ≥(

14c
10−7κ

)2
= Θ(1),

n∑

i=1
α2q+1
i 〈Sui,Su1〉2 −

∑n
i=1|αi|2q+1〈Sui,Su1〉2

6 ≥ d2
(

1− κ

4

)
− d

(
1 + κ

√
d

4c

)
s− −

d2(1 + κ
4 ) + d(1 + κ

√
d

4c )s−
6

≥ (10− 7κ)d2 − 14cd
√
d

12 ≥ 0,

where the second inequality stems from s− ≤ c
√
d. Hence, the proof is completed with cκ = 1

6 in this case.
�

Theorem 4. Assume A satisfies Assumption 1. Let û = RSVD(A,N (0, 1)n×d, q, d) for any q ∈ N. Then,

R(û) = Ω
(
cκ

(
d

d+ i0

) 1
2q+1

)

with probability at least 1− e−Ω(
√
dκ2).

Proof Evaluating Ra defined in (4) in Section 4.1 on a = STu1/
∥∥STu1

∥∥
2 and by Lemma 2 there exists a

constant cκ ∈ (0, 1] such that

Ra =
∑n
i=1 α

2q+1
i 〈STui,STu1〉2∑n

i=1 α
2q
i 〈STui,STu1〉2

≥ cκ
∑n
i=1|αi|2q+1〈STui,STu1〉2∑n
i=1 α

2q
i 〈STui,STu1〉2

= cκ R̄a,

where R̄a is introduced in (9) in Section 4.3, with probability at least 1− e−Ω(
√
dκ2). Repeating the arguments in

the proof of Theorem 3 in Appendix A.2 with replacing R(û) by R̄a yields:

R̄a = Ω
(
cκ

(
d

d+ i0

) 1
2q+1

)

with probability at least 1− e−Ω(
√
dκ2), and hence the desired result follows by the union bound. �
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B Proofs of RandSum

B.1 Large deviation of projection length for Bernoulli random matrix

This subsection is used to prove Lemma 3, which serves as an intermediate step for Theorem 5, restated below.
The proof relies on a simple but powerful concept, ε-net. As its usefulness, the definition and related theorems
can be found in literature of random matrix. Here we shortly define it and state its important property below
Lemma 3. Interested reader are referred to the reference therein.

Definition 3 (ε-net, Definition 4.2.1 in (Vershynin, 2018)). Let (Sd−1, ‖·‖2) be a metric space and ε > 0. A
subset Nε ⊆ Sd−1 is called ε-net if

∀x, y ∈ Nε, ‖x− y‖2 ≤ ε.

Lemma 8 (Corrollary 4.2.13 in (Vershynin, 2018)). For any ε ∈ (0, 1), the size of Nε is bounded by

|Nε| ≤ 3dε−d.

We are ready to prove Lemma 3 restated below.

Lemma 3. Let v ∈ Sn−1, d ≤ n/3, and S ∼ Bernoulli(p)n×d for a constant p ∈ (0, 1) Then,

cos2 θ(v,S) = Ω
(

max{1, 〈v,1n〉2}
n

)

holds with probability at least 1− e−Ω(d).

Proof As it is easy to see that S is a nonzero matrix with probability 1− e−nd, the following deduction will be
made under ‖S‖2 > 0.
By the second inequality in Corollary 2 in Appendix C.2 with x = v and δ = 1/2, we deduce that

P

[
∥∥STv

∥∥
2 ≥

√
dp(1− p+ p〈v,1n〉2)

2

]
≥ 1− e−Ω(d). (27)

Recall that cos θ(v,S) = maxa∈Sd−1
〈v,Sa〉
‖Sa‖2

, (27) allows us to substitute a = STv/
∥∥STv

∥∥ and have

cos θ(v,S) ≥
∥∥STv

∥∥2
2

‖SSTv‖2
≥
∥∥STv

∥∥
2

‖S‖2
≥
√
dp(1− p+ p〈v,1n〉2)√

2 ‖S‖2
,

where the second inequality is due to submultiplicativity of ‖·‖2, namely
∥∥SSTv

∥∥
2 ≤ ‖S‖2

∥∥STv
∥∥

2, and the last
one is a consequence of (27). It remains to show that ‖S‖2 ≤ O

(√
nd
)
w.h.p., then the proof is done. For

this goal, we use the ε-net technique, introduced in the beginning of this subsection, and give a bound in two
steps:

(i). Let Nε be an ε-net defined on (Sd−1, ‖·‖2) for some ε ∈ (0, 1) to be determined later. We claim that

‖S‖2 ≤
1

1− ε sup
x∈Nε

‖Sx‖2 . (28)

Let w∗ ∈ argmaxx∈Sd−1 ‖Sx‖2, and since there exists x∗ ∈ Nε satisfying ‖w∗ − x∗‖2 ≤ ε, by submultiplica-
tivity and triangle inequality, we get

ε ‖S‖2 ≥ ‖S(w∗ − x∗)‖2 ≥ ‖S‖2 − ‖Sx∗‖2 ≥ ‖S‖2 − sup
x∈Nε

‖Sx‖2 ,

and rearranging the terms yields (28).
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(ii). Show that

P

[
sup

x∈Nε
‖Sx‖2 ≤

(
3
2 np(1− p+ pd)

) 1
2
]
≥ 1− 3dε−de−Ω(n) ≥ 1− e−Ω(n+d ln ε

3 ). (29)

For each x ∈ Nε, the first inequality in Corollary 2 in Appendix C.2 with x = x and δ = 1
2 (here n and d are

reversed) implies that we have probability at least 1− e−Ω(n)

‖Sx‖2 ≤
(

3
2 np(1− p+ p〈x,1d〉2)

) 1
2

≤
(

3
2 np(1− p+ pd)

) 1
2

,

where the last inequality is due to 〈x,1d〉2 ≤ d. As the size of Nε is upper bounded by 3dε−d (see Lemma 8
on the top of this subsection), the union bound over all x ∈ Nε yields (29).

Finally, setting ε = 1/e in (28)-(29) and assumption n− 2d > d lead to ‖Sx‖2 ≤ O
(√

nd
)
holds with probability

at least 1− e−Ω(n−2d) > 1− e−Ω(d). The union bound completes our proof as desired. �

B.2 RandSum with positive semidefinite matrices

Theorem 5. Let A be a positive semi-definite matrix with λ1 > 0 and û = RandSum(A, q, d, p) for any constant
p ∈ (0, 1), any q ∈ N, and d ≥ 2. Then,

R(û) =
(

Ω
(

max{d, 〈u1,1n〉2}
n

)) 1
2q+1

with probability at least 1− e−Ω(d).

Proof Define A1 =
{[ a1

0b d2 c

]
: a1 ∈ Sd d2 e−1

}
and A2 =

{[0d d2 e
a2

]
: a2 ∈ Sb d2 c−1

}
. Since R(û) ≥ maxa∈Sd−1 Ra,

where Ra is introduce on Section 4.1 and has an expression (4), we can conclude that

R(û) ≥ max
{

max
a∈A1

Ra, max
a∈A2

Ra

}
≥ max

{
cos2 θ(u1,S1), cos2 θ(u1,S2)

} 1
2q+1 ,

where the last inequality is an application of (7) in Section 4.1. The proof is completed by Lemma 1 and Lemma 3.
�

B.3 RandSum with indefinite matrices

Assumption 2 is restated here for convenience.

Assumption 2. Assume that (i) 〈u1,1n〉2 = Ω(1) and (ii) there exists a constant κ′ ∈ (0, 1] such that

n∑

i=2
λ2q+1
i ξi ≥ κ′

n∑

i=2
|λi|2q+1ξi,

where ξi = E
[
〈STui, 1d√

d
〉2
]

= p(1− p+ pd〈ui,1n〉2), ∀i ∈ [n].

Lemma 4. Assume that A satisfies Assumption 2. Let S ∼ Bernoulli(p)n×d for a constant p ∈ (0, 1). There
exists a constant cκ′ ∈ (0, 1] such that

P

[
n∑

i=1
λ2q+1
i 〈STui,STu1〉2 ≥ cκ′

n∑

i=1
|λi|2q+1〈STui,STu1〉2

]
≥ 1− e−Ω(

√
dκ′2).
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Proof Here we introduce

µi = E
[∥∥ST:,1ui

∥∥2
2

]
= p(1− p+ p〈ui,1n〉2), ∀i ∈ [n].

Recall that αi = λi/λ1 for all i ∈ [n]. From Assumption 2, we have:

• By (i), there exists a constant ν ∈ (0, 1] such that 〈u1,1n〉2 ≥ ν. It follows that

ξ1 ≥ p2d〈u1,1n〉2 = pd · p((1− p)〈u1,1n〉2 + p〈u1,1n〉2) ≥ pνdµ1. (30)

• By (ii), there exists κ′ ∈ (0, 1] such that
∑n
i=2 α

2q+1
i ξi = κ′

∑n
i=2|αi|2q+1ξi.

We then partition [n] into three subsets, [n] = {1} ∪ I+ ∪ I−, where I+ = {i ∈ [n]\{1} : αi > 0} and
I− = {i ∈ [n] : αi < 0}. It is natural to assume I− 6= ∅, as otherwise this lemma trivially holds. As similar to
what we proceed in the proof of Lemma 2 in Appendix A.3, two important quantities follows from this partition:
s+ =

∑
i∈I+

α2q+1
i ξi and s− =

∑
i∈I− |αi|2q+1ξi.

Firstly, for the term 〈STu1,STu1〉2, applying Corollary 2 in Appendix C.2 with x = u1 and δ = 1−
√

1− κ′/4
(resp. δ =

√
1 + κ′/4− 1) for the lower-tail (resp. upper-tail) yields that

P
[
d2µ2

1

(
1− κ′

4

)
≤ 〈STu1,STu1〉2 ≤ d2µ2

1

(
1 + κ′

4

)]
≥ 1− e−Ω(dκ′2). (31)

As for the remaining terms, we carefully apply concentration inequalities under two scenarios: either (i).
s− = Ω(

√
d) or (ii). s− = o(

√
d).

(i). s− = Ω(
√
d). Invoking the lower-tail (resp. upper-tail) of Lemma 13 in C.3 with δ = ε =

√
1 + κ′/2− 1 (resp.

δ = ε =
√

1− κ′/2− 1), βi = αi for i ∈ I+, and βi = 0 otherwise, we get

P


ξ1

(
1− κ′

2

)
s+ ≤

∑

i∈I+

α2q+1
i 〈STui,STu1〉2 ≤ dµ1

(
1 + κ′

2

)
s+


 ≥ 1− e−Ω(

√
dκ′2). (32)

Again, using Lemma 13 with δ = ε =
√

1 + κ′/2− 1, βi = |αi| for i ∈ I−, and βi = 0 otherwise leads to

P


∑

i∈I−
|αi|2q+1〈STui,STu1〉2 ≤ dµ1

(
1 + κ′

2

)
s−


 ≥ 1− e−Ω(

√
dκ′2). (33)

Now, we prove our assertion. The lower-tails in (31)(32) and upper-tail in (33) imply that

n∑

i=1
α2q+1
i 〈Sui,Su1〉2 ≥ dµ1

(
dµ1(1− κ′

4 ) + ξ1
dµ1

(1− κ′

2 )s+ − (1 + κ′

2 )s−
)

(a)
≥ pν · dµ1

(
dµ1(1− κ′

4 ) + (1− κ′

2 )s+ − (1 + κ′

2 )s−
)

(b)= pν · dµ1

(
d(4− κ′)µ1

4 + κ′(s+ + s−)
2

)

(c)
≥ pνκ′

3

(
dµ1

(
d(4 + κ′)µ1

4 + (1 + κ′

2 )(s+ + s−)
)) (d)
≥ pνκ′

3

n∑

i=1
|αi|2q+1〈Sui,Su1〉2,

where (a) uses (30), (b) is due to (1− κ′)s+ = (1 + κ′)s− (rearranged from
∑
i 6=1 α

2q+1
i ξi = κ′

∑
i6=1|αi|2q+1ξi),

(c) is easily checked by comparing the coefficients, and (d) follows from the upper-tails in (31)(32)(33). Therefore,
a union bound completes the proof with cκ′ = pνκ′

3 in this case.
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(ii). s− = o(
√
d). There exists a constant c > 0 such that s− ≤ c

√
d. Observe that for two summations of

interest,
∑n
i=1 α

2q+1
i 〈STui,STu1〉2 and

∑n
i=1|αi|2q+1〈STui,STu1〉2, only the terms in I− change their signs.

Our assertion follows in the sense that the terms with indices in I− do not affect too much with high probability.

Invoking Lemma 13 in C.3 with δ = κ′(
√
d−1)µ1
4c , ε = κ′µ1

4c(1+δ) , βi = |αi| for i ∈ I−, and βi = 0 otherwise , we
get

P


∑

i∈I−
|αi|2q+1〈STui,STu1〉2 ≤ dµ1

(
1 + κ′

√
dµ1

4c

)
s−


 ≥ 1− e−Ω(

√
dκ′2). (34)

On the one hand, the lower-tail in (31) and the upper-tail in (34) yield that
n∑

i=1
α2q+1
i 〈Sui,Su1〉2 ≥ d2µ2

1

(
1− κ′

4

)
− dµ1

(
1 + κ′

√
dµ1

4c

)
s− +

n∑

i∈I+

α2q+1
i 〈Sui,Su1〉2 (35)

On the other hand, the upper-tails in (31)(34) imply that
n∑

i=1
|αi|2q+1〈Sui,Su1〉2 ≤ d2µ2

1(1 + κ′

4 ) + dµ1(1 + κ′
√
dµ1

4c )s− +
n∑

i∈I+

α2q+1
i 〈Sui,Su1〉2 (36)

As a consequence of a union bound on (35)(36), we have with probability at least 1− e−Ω(
√
dκ′2),

n∑

i=1
α2q+1
i 〈Sui,Su1〉2 −

1
6 ·

n∑

i=1
|αi|2q+1〈Sui,Su1〉2

≥ d2µ2
1

(
1− κ′

4

)
− dµ1

(
1 + κ′

√
dµ1

4c

)
s− −

d2µ2
1(1 + κ′

4 ) + dµ1(1 + κ′
√
dµ1

4c )s−
6

≥ 1
12

(
(10− 7κ′)d2µ2

1 − 14cd
√
dµ1

)
≥ 0,

where the second inequality is due to s− ≤ c
√
d, for any d ≥

(
14c

(10−7κ′)µ1

)2
= Θ(1). Hence, the proof is completed

with cκ′ = 1
6 in this case. �

Theorem 6. Assume that A satisfies Assumptions 1 and 2. Let û = RandSum(A, q, d, p) for any constant
p ∈ (0, 1) and any q ∈ N, and i0 be defined as in Definition 2 in Section 4.2. Then,

R(û) = Ω
(

max
{
cκ

(
d

d+ i0

) 1
2q+1

, cκ′

(
max{d, 〈u1,1n〉2}

n

) 1
2q+1

})

with probability at least 1− e−Ω(
√
dmin(κ,κ′)2).

Proof Let

a1 =




ST1 u1

‖ST1 u1‖2
0b d2 c


 and a2 =




0d d2 e
ST2 u1

‖ST2 u1‖2


 .

A union bound of Lemma 2 and Lemma 4 implies that there exist constants cκ and cκ′ such that

Ra1 ≥ cκR̄a1 and Ra2 ≥ cκ′R̄a2 ,

with probability at least 1− e−Ω(
√
dκ2) − e−Ω(

√
dκ′2), where Ra and R̄a are defined in (4) in Section 4.1 and (9)

in Section 4.3, respectively. Hence,

P
[
R(û) ≥ max

{
cκR̄a1 , cκ′R̄a2

}]
≥ 1− e−Ω(

√
dmin(κ,κ′)2).

Finally, applying similar argument in the proof of Theorem 3 (see Appendix A.2) to lower bound R̄a1 and
Theorem 5 to lower bound R̄a2 completes the proof. �
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C Concentration inequalities

Before showing our lemmas on both Gaussian and Bernoulli random variables, there are some necessary definition
and standard concentration inequalities to be introduced. For the random variables considered in this work,
sub-gaussian and sub-exponential norms are useful to quantify the probabilities of rare events. In C.1, we
introduce them for completeness and list the concentration inequalities (Hoeffding, Bernstein, and Hanson-Wright
inequalities) used in the following proofs. In C.2, we provide two corollaries yielded by Bernstein inequality for
Gaussian and Bernoulli distributions respectively. Finally, our technical lemmas for these two random variables
will be shown in C.3.

C.1 Sub-gaussian norm and sub-exponential norm

Definition 4 (Definition 2.5.6 (Vershynin, 2018)). The sub-gaussian norm ‖·‖ψ2
is a norm on the space of

sub-gaussian random variables. For any sub-gaussian random variable X,

‖X‖ψ2
= inf{t > 0 : E

[
exp

(
X2/t2

)]
≤ 2}.

The sum of sub-gaussian random variables is still a sub-gaussian random variable, and its norm can be
characterized by the following Proposition.

Proposition 1 (Proposition 2.6.1 (Vershynin, 2018)). Let X1, · · · , Xm be a zero-mean sub-gaussian random
variables. Then,

∥∥∥∥∥∥
∑

i∈[m]

Xi

∥∥∥∥∥∥

2

ψ2

= O


∑

i∈[m]

‖Xi‖2ψ2


 ,

where O hides an absolute constant.

Definition 5 (Definition 2.7.5 (Vershynin, 2018)). The sub-exponential norm ‖·‖ψ1
is a norm on the space of

sub-exponential random variables. For any sub-exponential random variable X,

‖X‖ψ1
= inf{t > 0 : E [exp (|X|/t)] ≤ 2}.

If X is sub-gaussian random variable, then X is also a sub-exponential random variable. Besides, there is one
well-known property for these two norms.

Proposition 2 (Lemma 2.7.6 (Vershynin, 2018)). Let X be a zero-mean sub-gaussian random variable. Then,

‖X‖2ψ2
=
∥∥X2∥∥

ψ1
.

For concreteness, we compute sub-gaussian norms for two basic variables.

Example 1. Here we evaluate the values of ‖·‖ψ2
and ‖·‖ψ1

for the sub-gaussian random variables which will be
used later

• If X ∼ N (0, σ2), for some σ ∈ R+, then ‖X‖ψ2
= 2σ.

• If Y ∼ Bernoulli(p), for some p ∈ (0, 1), then ‖Y ‖ψ2
= 1√

ln(1+p−1)
and ‖Y ‖ψ1

= 1
ln(1+p−1) .
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Proof For any t >
√

2σ, we observe that

E
[
exp

(
X2/t2

)]
= 1
σ
√

2π

∫

x∈R
exp

(
− x2

2σ2 + x2

t2

)
dx = 1

σ
√

1
2σ2 − 1

t2

,

which is 2 when t = 2σ, hence ‖X‖ψ2
= 2σ. As for Y , elementary calculus shows that

‖Y ‖ψ2
= inf

{
t > 0 : p exp(t−2) + (1− p) ≤ 2

}
= inf

{
t > 0 : exp(t−2) ≤ 1 + p

p

}
= 1√

ln(1 + p−1)
,

and that

‖Y ‖ψ1
= inf

{
t > 0 : p exp(t−1) + (1− p) ≤ 2

}
= inf

{
t > 0 : exp(t−1) ≤ 1 + p

p

}
= 1

ln(1 + p−1) .

�

Here is the list of concentration inequalities we will use later. The first proposition is an immediate result from
Definition 4 and 5, the others are standard concentration inequalities characterized by these two norms.

Proposition 3 (Proposition 2.5.2 and Proposition 2.7.1 in (Vershynin, 2018)). Let X and Y be a sub-gaussian
and a sub-exponential random variables, respectively. Then for any t ≥ 0, we have

P [|X − E [X]| ≥ t] ≤ exp
(
−Ω

(
t2

‖X‖2ψ2

))
and P [|Y − E [Y ]| ≥ t] ≤ exp

(
−Ω

(
t

‖Y ‖ψ1

))
.

Lemma 9 (Hoeffding’s inequality (Theorem 2.6.3 in (Vershynin, 2018))). Let m ∈ N, X1, · · · , Xm be i.i.d.
zero-mean sub-gaussian random variables, and a ∈ Rm be a nonzero vector. Then,

∀t ≥ 0, P

[∣∣∣∣∣
m∑

i=1
aiXi

∣∣∣∣∣ > t

]
≤ exp

(
−Ω

(
t2

K ‖a‖22

))
,

where K = ‖X1‖2ψ2
.

Lemma 10 (Bernstein’s inequality (Theorem 2.8.2 in (Vershynin, 2018))). Let m ∈ N and a = (a1, · · · ,am) ∈
Rm \ {0n}. Let X1, · · · , Xm be independent sub-gaussian r.v.’s. Then there exists a universal constant c > 0 such
that for any t > 0,

P

[∣∣∣∣∣
m∑

i=1
ai
(
X2
i − E

[
X2
i

])
∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−cmin

{
t2

K2 ‖a‖22
,

t

K ‖a‖∞

})
,

where K = maxi∈[m]
∥∥X2

i − E
[
X2
i

]∥∥
ψ1
.

Lemma 11 (Hanson-Wright inequality (Theorem 6.2.1 in (Vershynin, 2018))). Let m ∈ N and X = (X1, . . . ,Xm)
be a random vector with i.i.d zero-mean sub-gaussian entries and M ∈ Rm×m \ {0m×m}. Then,

∀t > 0, P



∣∣∣∣∣∣
∑

i,j∈[m]

Mi,jXiXj − E


 ∑

i,j∈[m]

Mi,jXiXj



∣∣∣∣∣∣
> t


 ≤ exp

(
−Ω

(
min

{
t2

K2 ‖M‖2F
,

t

K ‖M‖2

}))
,

where K = ‖X1‖2ψ2
.

91



Ruo-Chun Tzeng, Po-An Wang, Florian Adriaens, Aristides Gionis, Chi-Jen Lu

C.2 Useful lemmas derived from Bernstein’s inequality

In this subsection, we will use Lemma 10 in C.1 to derive two Bernstein-type concentration inequalities. Corollary 1
(resp. Corollary 2) provides tail bounds on the length ‖Sx‖2 of Gaussian (resp. Bernoulli) random matrix S with
linear combination weights x of its columns.

Corollary 1. Let x ∈ Rn \ {0n} and S ∼ N (0, 1)n×d. Then, ∀δ > 0,

P
[∥∥STx

∥∥2
2 ≥ d(1 + δ) ‖x‖22

]
≤ e−Ω(dmin{δ,δ2}), and P

[∥∥STx
∥∥2

2 ≤ d(1− δ) ‖x‖22
]
≤ e−Ω(dmin{δ,δ2}).

Proof For each i = 1, . . . , d, the i-th column of S is denoted as S:,i. Because 〈S:,1,
x
‖x‖2
〉, . . . , 〈S:,d,

x
‖x‖2
〉 are

i.i.d. random variable drawn from N (0, 1), the application of Lemma 10 with m = d, a = 1d, t = δd, and
Xi = 〈S:,i,x/ ‖x‖2〉 for i = 1, . . . , d, implies that there is a universal constant c > 0 such that

P

[∣∣∣∣∣
d∑

i=1
〈S:,i,

x
‖x‖2

〉2 − d
∣∣∣∣∣ ≥ δ · d

]
≤ 2 exp

(
−cmin

{
δ2d

K2 ,
δd

K

})
= exp

(
−Ω

(
dmin

{
δ, δ2})) ,

where K =
∥∥X2

1 − E
[
X2

1
]∥∥
ψ1
. A triangle inequality on ψ1 norm gives the of Kas:

K ≤
∥∥X2

1
∥∥
ψ1

+
∥∥E
[
X2

1
]∥∥
ψ1
≤ ‖X1‖2ψ2

+ 1
ln 2 ≤ 2 + 1

ln 2 ,

where the second inequality is a consequence of Proposition 2 and the last one is shown in Example 1. As∥∥STx
∥∥2

2 =
∑d
i=1〈S:,i,x〉2, the two claimed inequalities hold by rearranging the above inequality. �

Corollary 2. Let x ∈ Rn and S ∼ Bernoulli(p)n×d for a constant p ∈ (0, 1). Then, ∀δ > 0,

P
[∥∥STx

∥∥2
2 ≥ d(1 + δ)µ

]
≤ e−Ω(dmin{δ,δ2}) and P

[∥∥STx
∥∥2

2 ≤ d(1− δ)µ
]
≤ e−Ω(dmin{δ,δ2}),

where µ = p(1− p) ‖x‖22 + p2〈x,1n〉2.

Proof For each i = 1, . . . , d, we denote the i-th column of S as S:,i. Since 〈S:,1,x〉, . . . , 〈S:,d,x〉 are i.i.d., Lemma
10 with m = d, a = 1d, t = δdµ, and Xi = 〈S:,i,x〉 for i = 1, . . . , d, implies that there exists a universal constant
c > 0 such that

P

[∣∣∣∣∣
d∑

i=1
〈S:,i,x〉2 − dE

[
〈S:,1,x〉2

]
∣∣∣∣∣ ≥ δ · dµ

]
≤ 2 exp

(
−cmin

{
dµ2δ2

K2 ,
dµδ

K

})
,

whereK =
∥∥〈S:,1,x〉2 − E

[
〈S:,1,x〉2

]∥∥
ψ1
. The proof is done by showing (i). E

[
〈S:,1,x〉2

]
= µ, and (ii). K = Θ(µ).

(i). Show E
[
〈S:,1,x〉2

]
= µ: By using linearity of expectation repeatedly, we obtain that

E
[
〈S:,1,x〉2

]
= E



(

n∑

i=1
Si,1xi

)2

 =

n∑

i=1
E
[
(Si,1xi)2]+

∑

i 6=j
E [(Si,1xi)(Sj,1xj)]

= p ‖x‖22 + p2(〈x,1n〉2 − ‖x‖22) = p(1− p) ‖x‖22 + p2〈x,1n〉2 = µ.

(ii). Show K = Θ(µ): Let Z = S:,1 − p1n. As verified in (i), E
[
〈S:,1,x〉2

]
= µ = p(1− p) ‖x‖22 + p2〈x,1n〉2, we

get

K =
∥∥〈S:,1,x〉2 − E

[
〈S:,1,x〉2

]∥∥
ψ1

=
∥∥∥〈Z,x〉2 + 2p〈Z,x〉〈x,1n〉 − p(1− p) ‖x‖22

∥∥∥
ψ1

≤
∥∥〈Z,x〉2

∥∥
ψ1

+ 2p|〈x,1n〉| ‖〈Z,x〉‖ψ1
+ p(1− p) ‖x‖22

ln 2 .
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Since Z has i.i.d. entries and p = Θ(1), we evaluate

∥∥〈Z,x〉2
∥∥
ψ1

= ‖〈Z,x〉‖2ψ2
=

n∑

i=1
x2
i ‖Zi‖2ψ2

= ‖x‖22 ‖Z1‖2ψ2
≤ ‖x‖22

(
‖S1,1‖ψ2

+ ‖p‖ψ2

)2
,

and ‖〈Z,x〉‖ψ1
= |〈x,1n〉| ‖Z1‖ψ1

≤ |〈x,1n〉|
(
‖S1,1‖ψ1

+ ‖p‖ψ1

)
.

Because ‖S1,1‖ψ2
= 1√

ln(1+p−1)
= Θ(1), ‖S1,1‖ψ1

= 1
ln(1+p−1) = Θ(1) (see Example 1 for ψ1 and ψ2 norm),

‖p‖ψ2
= p√

ln 2 = Θ(1), and ‖p‖ψ1
= p

ln 2 = Θ(1), combining all yields K = Θ(µ). �

C.3 Techinical Lemmas

Lemma 12. Let β = (β1, · · · , βn) ∈ [0, 1]n s.t (β2, . . . , βn) 6= 0n−1, U = [u1, · · · ,un] ∈ Rn×n be an orthonormal
matrix, and S ∼ N (0, 1)n×d. Then, for any δ > 0 and ε ∈ (0, 1),

P

[
n∑

i=2
βi〈STui,STu1〉2 ≥ d(1 + ε)(1 + δ)

n∑

i=2
βi

]
≤ exp

(
−Ω

(
max

{
1,

n∑

i=2
βi

}
min

{
δ, δ2}

))
+ e−Ω(dε2),

and P

[
n∑

i=2
βi〈STui,STu1〉2 ≤ d(1− ε)(1− δ)

n∑

i=2
βi

]
≤ exp

(
−Ω

(
max

{
1,

n∑

i=2
βi

}
min

{
δ, δ2}

))
+ e−Ω(dε2).

Proof In the following, we only focus on the upper-tail bound as the others will hold by symmetry.

For the simplicity of presentation, we introduce a set Vε = {v ∈ Rd : 0 < ‖v‖22 ≤ d(1 + ε)} and the events

E = I

{
n∑

i=2
βi〈STui,STu1〉2 ≥ d(1 + ε)(1 + δ)

n∑

i=2
βi

}
and G(v) = I

{
STu1 = v

}
,∀v ∈ Vε.

Using Corollary 1 in C.2 with x = u1, δ = ε < 1 and the fact that
∥∥STu1

∥∥2
2 > 0 a.e. yield that P [¬ (∪v∈VεG(v))] =

P
[∥∥STu1

∥∥2
2 > d(1 + ε)

]
≤ e−Ω(dε2), which explicitly says that ∪v∈VεG(v) happens with high probability. As a

consequence, we have

P [E] ≤ P [E ∩ ¬ (∪v∈VεG(v))] +
∫

v∈Vε
P [E ∩G(v)] dP [G(v)] ≤ e−Ω(dε2) + sup

v∈Vε
P [E ∩G(v)] , (37)

where the last inequality follows from P [∪v∈VεG(v)] ≤ 1 and the upper bound of P [¬ (∪v∈VεG(v))] proved above.
By (37), it is sufficient to show that for any v ∈ Vε,

P [E ∩G(v)] ≤ exp
(
−Ω

(
max

{
1,

n∑

i=2
βi

}
min

{
δ, δ2}

))
. (38)

Show (38) for any v ∈ Vε

Since ‖v‖22 ≤ d(1 + ε) for each v ∈ Vε,

P [E ∩G(v)] = P

[
n∑

i=2
βi〈STui,v〉2 ≥

(
n∑

i=2
βi

)
d(1 + δ)(1 + ε)

]

≤ P

[
n∑

i=2
βi〈STui,v〉2 ≥

(
n∑

i=2
βi

)
(1 + δ) ‖v‖22

]
. (39)

Because for each i = 2, . . . , n, 〈STui,v〉 =
∑n
r=1

∑d
s=1 Sr,s(ui)rvs is a random variable from N (0, ‖v‖22) (a

linear combination of normal distributions is a normal distribution again), Example 1 in C.1 shows that
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∥∥〈STui,v〉
∥∥
ψ2

= 2 ‖v‖2. Moreover, the assumption U is an orthonormal matrix implies that {〈STui,v〉}ni=2
are independent (see Theorem 8.1, Chap 5(Gut, 2009)). By applying Lemma 10 in C.1 with m = n − 1,
Xi = 〈STui+1,v〉, ∀i = 1, · · · , n − 1, a = (β2, . . . , βn), and t = δ · (∑n

i=2 βi) ‖v‖
2
2, we give an upper bound of

right-hand side of (39) as below (it is already shown that E[〈STui,v〉2] = ‖v‖22 before):

P

[
n∑

i=2
βi

(
〈STui,v〉2 − ‖v‖22

)
≥ δ

(
n∑

i=2
βi

)
‖v‖22

]
≤ P

[∣∣∣∣∣
n∑

i=2
βi

(
〈STui,v〉2 − ‖v‖22

)∣∣∣∣∣ ≥ δ
(

n∑

i=2
βi

)
‖v‖22

]

≤ 2 exp
(
−cmin

{
δ2 (
∑n
i=2 βi)

2 ‖v‖42
‖v‖42

∑n
i=2 β

2
i

,
δ · (∑n

i=2 βi) ‖v‖
2
2

‖v‖22 maxi 6=1 βi

})

= 2 exp
(
−cmin

{
(
∑n
i=2 βi)2δ2
∑n
i=2 β

2
i

,

∑n
i=2 βiδ

maxi 6=1 βi

})
. (40)

Combining (39)(40), it remains to show that

(i) (
∑n
i=2 βi)2

∑n
i=2 β

2
i

≥ max
{

1,
n∑

i=2
βi

}
, and (ii).

∑n
i=2 βi

maxi 6=1 βi
≥ max

{
1,

n∑

i=2
βi

}
.

For (i). As (
∑n
i=2 βi)2 =

∑n
i=2 β

2
i +

∑
i 6=j βiβj ≥

∑n
i=2 β

2
i , and

∑n
i=2 β

2
i ≤

∑n
i=2 βi, (i) holds by using these two

inequalities in numerator and denominator respectively.
For (ii). As

∑n
i=2 βi ≥ maxi6=1 βi, and maxi 6=1 βi ≤ 1, (ii) follows by using these two inequalities in numerator

and denominator respectively. �

Lemma 13. Let β = (β1, · · · , βn) ∈ [0, 1]n s.t. (β2, . . . , βn) 6= 0n−1, U = [u1, · · · ,un] ∈ Rn×n be an orthonormal
matrix with 〈u1,1n〉2 = Ω(1), and S ∼ Bernoulli(p)n×d with some constant p ∈ (0, 1). Then, for any δ > 0 and

ε ∈ (0, 1), we have probability at least 1− e
−Ω
(

max{1,∑n

i=2
βiξi} (1−ε)2

(1+ε)2 min{δ,δ2}
)
− e−Ω(min(d,ξ1)ε2) that

(1− δ)(1− ε)
n∑

i=2
βiξiξ1 ≤

n∑

i=2
βi〈STui,STu1〉2 ≤ d(1 + δ)(1 + ε)

n∑

i=2
βiξiµ1,

where
µi = p(1− p+ p〈ui,1n〉2), and ξi = p(1− p+ pd〈ui,1n〉2), ∀i ∈ [n].

Proof Similar to the proof C.3 of Lemma 12, we introduce the set

Vε = {v ∈ Rd : dµ1(1− ε) ≤ ‖v‖22 ≤ dµ1(1 + ε) and dξ1(1− ε) ≤ 〈v,1d〉22 ≤ dξ1(1 + ε)}

and the events

E = I

({
n∑

i=2
βi〈STui,STu1〉2 ≤ (1− δ)(1− ε)

n∑

i=2
βiξiξ1

}
∪

{
n∑

i=2
βi〈STui,STu1〉2 ≥ d(1 + δ)(1 + ε)

n∑

i=2
βiξiµ1

})

and G(v) = I
{

STu1 = v
}
,∀v ∈ Vε. The sum rule of probability implies that

P [E] = P [E ∩ ¬ (∪v∈VεG(v))] +
∫

v∈Vε
P [E ∩G(v)] dP [G(v)] ≤ P [¬ (∪v∈VεG(v))] + sup

v∈Vε
P [E ∩G(v)] . (41)

To bound the first term in (41), we claim that

(i). P
[∣∣∣
∥∥STu1

∥∥2
2 − dµ1

∣∣∣ ≥ ε · dµ1

]
≤ e−Ω(dε2),

(ii). P
[∣∣〈STu1,1d〉2 − dξ1

∣∣ ≥ ε · dξ1
]
≤ e−Ω(ξ1ε

2),
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and then an application of a union bound of (i)(ii) yields P [¬ (∪v∈VεG(v))] ≤ e−Ω(dε2) + e−Ω(ξ1ε
2). As for the

second term in (41), one consequence of Lemma 14 at the end of this section is that

sup
v∈Vε

P [E ∩G(v)] ≤ e
−Ω
(

max{1,∑n

i=2
βiξi}min

{
1, 〈v,1d〉

4

d2‖v‖4
2
,
〈v,1d〉2
d‖v‖2

2

}
min{δ,δ2}

)

in which min
{

1, 〈v,1d〉
4

d2‖v‖4
2
, 〈v,1d〉

2

d‖v‖2
2

}
= min

{
1, (1−ε)2

(1+ε)2
ξ2

1
d2µ2

1

}
= Ω

(
(1−ε)2

(1+ε)2

)
. Hence, combining all by union bound

gives the desired.

It remains to show (i) and (ii). For convenience, let Z = S− p1n1Td , a zero-mean matrix.

(i). This is a direct result of the first inequality in Corollary 2 in C.2 with x = u1 and δ = ε.

(ii). To show P
[∣∣〈STu1,1d〉2 − dξ1

∣∣ ≥ ε · dξ1
]
≤ e−Ω(ξ1ε

2), where ξ = p(1− p+ pd〈u1,1n〉2). As the lower tail is
proved in a similar to the upper tail, in what follows, we will pay attention on the upper tail only. Firstly, it is
easy to verified that

〈STu1,1d〉2 = 〈ZTu1,1d〉2 + 2pd〈ZTu1,1d〉〈u1,1n〉+ p2d2〈u1,1n〉2. (42)

To bound the first (resp. the second) term in (42), we will use Proposition 3 in C.1 for sub-exponential (resp.
sub-gaussian) r.v., which is quantified the sub-gaussian norm, denoted by K =

∥∥〈ZTu1,1d〉
∥∥
ψ2

(recall that
the sub-exponential norm can be obtained by sub-gaussian norm, and vice versa, see Propsition 2 in C.1). By
Proposition 1 and Example 1 in C.1, we have

K2 = O


d

∑

i∈[n]

(u1)2
i ‖Z1,1‖2ψ2


 = O

(
d ‖Z1,1‖2ψ2

)
= O

(
d
(
‖Si,j‖ψ2

+ ‖p‖ψ2

)2
)

= O(d).

Additionally, one can evaluate 〈ZTu1,1d〉2 = dp(1− p) by repeatedly use the linearity of expectation and the
fact that the entries of S are i.i.d. drawn from Bernoulli(p). Hence, invoking the concentration inequality for
sub-exponential (resp. sub-gaussian) in Proposition 3 in C.1 with t = dξ1ε

3 (resp. t = ε
√
dξ1
3 ) on 〈ZTu1,1d〉2 (resp.

〈ZTu1,1d〉) yields that

P
[∣∣〈ZTu1,1d〉2 − dp(1− p)

∣∣ ≥ dξ1ε

3

]
≤ e−Ω( dξ1ε

K2 ) ≤ e−Ω(ξ1ε
2), (43)

P
[∣∣〈ZTu1,1d〉

∣∣ ≥ ε
√
dξ1
3

]
≤ e−Ω( dξ1ε2

K2 ) = e−Ω(ξ1ε
2). (44)

Plugging these (43) and (44) into (42), a union bound gives us that

〈ZTu1,1d〉2 + 2pd〈ZTu1,1d〉〈u1,1n〉+ p2d2〈u1,1n〉2 ≤ dp(1− p) + p2d2〈u1,1n〉2 + dξ1ε

3 + 2pd〈u1,1n〉
ε
√
dξ1
3

≤ dξ1 + dξ1ε,

where the second inequality is yielded by ξ1 = p(1− p+ pd〈u1,1n〉2) and pd〈u1,1n〉 ≤
√
dξ1. Then we conclude

this lemma with (ii) as desired. �

Lemma 14. Let v ∈ Rd \ {0d}, (β2, . . . , βn) ∈ [0, 1]n−1 \ {0n−1}, [u1, . . . ,un] ∈ Rn×n be an orthonormal matrix,
S ∼ Bernoulli(p)n×d with some constant p ∈ (0, 1), and ξi = p(1− p+ pd〈ui,1n〉2),∀i ∈ [n]. Then,

P

[
(1− δ)η1 ≤

n∑

i=2
βi〈STui,v〉2 ≤ (1 + δ)η2

]
≥ 1− e

−Ω
(

max{1,∑n

i=2
βiξi}min

{
1, 〈v,1n〉

4

d2‖v‖4
2
,
〈v,1n〉2
d‖v‖2

2

}
min{δ,δ2}

)
,

where η1 =
∑n
i=2 βiξi

〈v,1d〉2
d and η2 =

∑n
i=2 βiξi ‖v‖

2
2.
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Proof An elementary calculation of evaluating the expectation of
∑n
i=2 βi〈STui,v〉2 leads to

E

[
n∑

i=2
βi〈STui,v〉2

]
= p(1− p)

n∑

i=2
βi ‖v‖22 + p2

n∑

i=2
βi〈ui,1n〉2〈v,1d〉2.

After applying Cauchy inequality, 〈v,1d〉2 ≤ d ‖v‖22, twice, we get that η1 ≤ E
[∑n

i=2 βi〈STui,v〉2
]
≤ η2. This

observation inspires us to give high probability lower bound in term of η1 and upper bound in term of η2 respectively.

Define Z = S− p1n1Td , M =
∑n
i=2 βiuiuTi and B = M⊗ vvT where ⊗ is the Kronecker product. With these

definition, we can express the weighted sum as:
n∑

i=2
βi〈STui,v〉2 =

∑

(i1,j1),(i2,j2)∈[n]×[d]

B(i1,j1),(i2,j2)Si1,j1Si2,j2 = (I) + (II), (45)

where (I) =
∑

(i1,j1),(i2,j2)∈[n]×[d]

B(i1,j1),(i2,j2)Zi1,j1Zi2,j2

and (II) =
∑

(i1,j1),(i2,j2)∈[n]×[d]

B(i1,j1),(i2,j2)(Zi1,j1 + Zi2,j2 + p)p.

Such decomposition allows us to bound (I) by Lemma 11 and bound (II) by Lemma 9 in C.1, which require us to
evaluate the necessary quantities.

• ‖B‖2F =
∑
i1,i2∈[n],j1,j2∈[d] (Mi1,i2vj1vj2)2 = ‖v‖42 ‖M‖F = ‖v‖42

∑n
i=2 β

2
i ,

where the last equation is due to M =
∑n
i=2 βiuiuTi is an eigenvalue decomposition of M.

• ‖B‖2 = ‖M‖2
∥∥vvT

∥∥
2 = maxi 6=1 βi ‖v‖22,

where the first equation is a property of Kronecker product (see e.g. Theorem 4.2.15 in (Horn et al., 1994)).

To bound (I), invoking Lemma 11 with m = nd, M = B, X(i−1)d+j = Zi,j , ∀i ∈ [n], j ∈ [d] and t = δη1/2 (resp.
t = δη2/2) for the lower- (resp. upper-) tail bounds yields that

P
[
¬
{
−δη1

2 < (I)− E [(II)] < δη2
2

}]
≤ exp

(
−Ω

(
min

{
η2

2δ
2

‖B‖2F
,
η2δ

‖B‖2

}))
+exp

(
−Ω

(
min

{
η2

1δ
2

‖B‖2F
,
η1δ

‖B‖2

}))
.

(46)
To bound (II), applying Lemma 9 with t = δη1/4 (resp. t = δη2/4) for the lower- (resp. upper-) tail bounds
yields

P
[
¬
{
−δη1

2 < (II)− E [(II)] < δη2
2

}]
≤ exp

(
−Ω

(
η2

2δ
2

‖B‖2F

))
+ exp

(
−Ω

(
η2

1δ
2

‖B‖2F

))
. (47)

In what follows, we will show

(i). min
{

η2
2

‖B‖2
F

, η2
‖B‖2

}
= Ω (max {1,∑n

i=2 βiξi}), and

(ii). min
{

η2
1

‖B‖2
F

, η1
‖B‖2

}
= Ω

(
max {1,∑n

i=2 βiξi}min
{
〈v,1d〉4
d2‖v‖4

2
, 〈v,1d〉

2

d‖v‖2
2

})
.

Then this proof is done by using a union bound of (46) and (47) into (45).

(i). From the definition of η2 and our above computations, we get η2
2

‖B‖2
F

= Ω
(

(
∑n

i=2
βiξi)2

∑n

i=2
β2
i

)
and η2

‖B‖2
=

Ω
(∑n

i=2
βiξi

maxi6=1 βi

)
. It is done by the following claims:

(a). (
∑n
i=2 βiξi)2
∑n
i=2 β

2
i

= Ω
(

max
{

1,
n∑

i=2
βiξi

})
, and (b).

∑n
i=2 βiξi

maxi6=1 βi
= Ω

(
max

{
1,

n∑

i=2
βiξi

})
.

(a). stems from (
∑n
i=2 βiξi)2 ≥ p2(1− p)2∑n

i=2 β
2
i , and p(1− p)

∑n
i=2 β

2
i ≤ p(1− p)

∑n
i=2 βi ≤

∑n
i=2 βiξi.

(b). holds since
∑n
i=2 βiξ ≥ p(1− p) maxi 6=1 βi, and maxi 6=1 βi ≤ 1.
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(ii). From the definition of η2 and our above computations, we get

min
{

η2
1

‖B‖2F
,
η1
‖B‖2

}
= Ω

(
min

{
(
∑n
i=2 βiξi)2
∑n
i=2 β

2
i

,

∑n
i=2 βiξi

maxi 6=1 βi

}
min

{
〈v,1d〉4
d2 ‖v‖42

,
〈v,1d〉2
d ‖v‖22

})
.

We then deduce (ii). by (a). and (b). and conclude this proof. �

D Conflicting group detection: approximation ratio

Algorithm 3: RandomEigenSign (v) by Bonchi et al. (2019)
for i = 1→ n do

ri = sign (vi) · Bernoulli(|vi|);
end
return r;

Theorem 7. For any û ∈ Sn−1, RandomEigenSign(û) is an O(n1/2/R(û))-approx algorithm to 2-conflicting
group detection.

Proof The proof strategy is similar to the analysis in (Bonchi et al., 2019).

Let r = RandomEigenSign(û) and s = sign (û) where si = 1 if ûi > 0 otherwise si = 0, ∀i ∈ [n]. We have

E
[

rTAr
rT r

]
=
∑

k

E
[

rTAr
rT r

∣∣∣rT r = k

]
P
[
rT r = k

]
=
∑

k

1
k

∑

i,j∈[n]

Ai,jsisjP
[
rirj = sisj

∣∣∣rT r = k
]
P
[
rT r = k

]

(a)=
∑

k

1
k

∑

i,j∈[n]

Ai,jsisjP
[
rT r = k

∣∣∣rirj = sisj
]
P [rirj = sisj ] =

∑

i,j∈[n]

Ai,jûiûjE
[

1
rT r

∣∣∣rirj = sisj
]

(b)
≥

∑

i,j∈[n]

Ai,jûiûj
1

E
[
rT r

∣∣∣rirj = sisj
] ,

where (a) results from applying Bayes’ rule, and (b) uses conditional Jensen’s inequality. By

E
[
rT r
∣∣∣rirj = sisj

]
= 2 +

∑

`∈[n]\{i,j}
P [r` = s`] ≤ 2 +

√
n− 2,

(b) and ûTAû = R(û), we get that E
[

rTAr
rT r

]
≥ ûTAû

2 +
√
n− 2

= R(û)λ1

2 +
√
n− 2

. �
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Figure: A cat closing the gap between statistical optimality and computational
efficiency using the MCP algorithm.

In the combinatorial best arm identification with fixed confidence and semi-bandit feed-
backs, there exists a statistically optimal but not computationally efficient algorithm.
The computational bottleneck is the computation for the most confusing parameter
(MCP). We design an approximate MCP algorithm and use it to design an algorithm
that is both statistically optimal and computationally efficient.
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Abstract

We study the best arm identification problem in combinatorial semi-bandits in the
fixed confidence setting. We present Perturbed Frank-Wolfe Sampling (P-FWS), an
algorithm that (i) runs in polynomial time, (ii) achieves the instance-specific mini-
mal sample complexity in the high confidence regime, and (iii) enjoys polynomial
sample complexity guarantees in the moderate confidence regime. To the best of our
knowledge, even for the vanilla bandit problems, no algorithm was able to achieve
(ii) and (iii) simultaneously. With P-FWS, we close the computational-statistical
gap in best arm identification in combinatorial semi-bandits. The design of P-FWS
starts from the optimization problem that defines the information-theoretical and
instance-specific sample complexity lower bound. P-FWS solves this problem
in an online manner using, in each round, a single iteration of the Frank-Wolfe
algorithm. Structural properties of the problem are leveraged to make the P-FWS
successive updates computationally efficient. In turn, P-FWS only relies on a
simple linear maximization oracle.

1 Introduction

An efficient method to design statistically optimal algorithms solving active learning tasks (e.g.,
regret minimization or pure exploration in bandits and reinforcement learning) consists in the
following two-step procedure. The first step amounts to deriving, through change-of-measure
arguments, tight information-theoretical fundamental limits satisfied by a wide class of learning
algorithms. These limits are often expressed as the solution of an optimization problem, referred in
this paper to as the lower-bound problem. Interestingly, this solution specifies the instance-specific
optimal exploration process: it characterizes the limiting behavior of the adaptive sampling rule
any statistically optimal algorithm should implement. In the second step, the learning algorithm
is designed so that its exploration process approaches the solution of the lower-bound problem.
This design yields statistically optimal algorithms, but typically requires to repeatedly solve the
lower-bound problem. This method has worked remarkably well for simple learning tasks such as
regret minimization or best-arm identification with fixed confidence in classical stochastic bandits
[Lai87, GC11, GK16], but also in bandits whose arm-to-average reward function satisfies simple
structural properties (e.g., Lipschitz, unimodal) [MCP14, WTP21].

The method also provides a natural way of studying the computational-statistical gap [KLLM22] for
active learning tasks. Indeed, if solving the lower-bound problem in polynomial time is possible, one
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may hope to devise learning algorithms that are both statistically optimal and computationally efficient.
As of now, however, the computational complexity of the lower-bound problem remains largely
unexplored, except for simple learning tasks. For example, in the case of best policy identification
in tabular Markov Decision Processes, the lower-bound problem is non-convex [AMP21] and its
complexity and approximability are unclear.

In this paper, we leverage the aforementioned two-step procedure to assess the computational-
statistical gap for the best arm identification in combinatorial semi-bandits in the fixed confidence
setting. We establish that, essentially, this gap does not exist (a result that was conjectured in
[JMKK21]). Specifically, we present an algorithm that enjoys the following three properties: (i) it
runs in polynomial time, (ii) its sample complexity matches the fundamental limits asymptotically in
the high confidence regime, and (iii) its sample complexity is at most polynomial in the moderate
confidence regime. Next, after formally introducing combinatorial semi-bandits, we describe our
contributions and techniques in detail.

Best arm identification in combinatorial semi-bandits. In combinatorial semi-bandits [CBL12,
CTMSP+15], the learner sequentially selects an action from a combinatorial set X ⊂ {0, 1}K .
When in round t, the action x(t) = (x1(t), . . . , xK(t)) ∈ X is chosen, the environment samples a
K-dimensional vector y(t) whose distribution is assumed to be Gaussian N (µ, I). The learner then
receives the detailed reward vector x(t)⊙ y(t) where ⊙ denotes the element-wise product (in other
words, the learner observes the individual reward yk(t) of the arm k if and only if this arm is selected
in round t, i.e., xk(t) = 1). The parameter µ characterizing the average rewards of the various arms
is initially unknown. The goal of a learner is to identify the best action i⋆(µ) = argmaxx∈X ⟨x,µ⟩
with a given level of confidence 1 − δ, for some δ > 0 while minimizing the expected number of
rounds needed. We assume that the best action is unique and denote by Λ = {µ ∈ RK : |i⋆(µ)| = 1}
the set of parameters satisfying this assumption. The learner strategy is defined by three components:
(i) a sampling rule dictating the sequence of the selected actions; (ii) a stopping time τ defining the
last round where the learner interacts with the environment; (iii) a decision rule specifying the action
ı̂ ∈ X believed to be optimal based on the data gathered until τ .

The sample complexity lower-bound problem. Consider the set of δ-PAC algorithms such that for
any µ ∈ Λ, the best action is identified correctly with probability at least 1− δ. We wish to find a δ-
PAC algorithm with minimal expected sample complexity Eµ[τ ]. To this aim, using classical change-
of-measure arguments [GK16], we may derive a lower bound of the expected sample complexity
satisfied by any δ-PAC algorithm. This lower bound is given by1 Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ). The
characteristic time T ⋆(µ) is defined as the value of the following problem

T ⋆(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
, (1)

where2 Σ = {∑x∈X wxx : w ∈ Σ|X |}, kl(a, b) is the KL-divergence between two Bernoulli
distributions with respective means a and b, and Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)} is the set of
confusing parameters. As it turns out (see Lemma 1), T ⋆(µ) is at most quadratic in K, and hence
the sample complexity lower bound is polynomial. (1) is a concave program over Σ [WTP21], and
a point ω⋆ in its solution set corresponds to an optimal allocation of action draws: an algorithm
sampling actions according to ω⋆ and equipped with an appropriate stopping rule would yield a
sample complexity matching the lower bound. In this paper, we provide computationally efficient
algorithms to solve (1) and show how these can be used to devise a δ-PAC best action identification
algorithm with minimal sample complexity and running in polynomial time. We only assume that we
have access to a computationally efficient Oracle, referred to as the LM (Linear Maximization) Oracle,
identifying the best action should µ be known (but for any possible µ). This assumption, made in all
previous work on combinatorial semi-bandits (see e.g. [JMKK21, PBVP20]), is crucial as indeed, if
there is no computationally efficient algorithm solving the offline problem argmaxx∈X ⟨x,µ⟩ with
known µ, there is no hope to solve its online version with unknown µ in a computationally efficient
manner. The assumption holds for a large array of combinatorial sets of actions [S+03], including
m-sets, matchings, (source–destination)-paths, spanning trees, matroids (refer to [CCG21b] for a
thorough discussion).

1We present proof in Appendix K for completeness – see also [JMKK21].
2ΣN denotes the (N − 1) dimensional simplex.
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The Most-Confusing-Parameter (MCP) algorithm. The difficulty of solving (1) lies in the inner
optimization problem, i.e., in evaluating the objective function:

Fµ(ω) = inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
= min

x ̸=i⋆(µ)
fx(ω,µ) (2)

where fx(ω,µ) = infλ∈Cx⟨ω, (µ−λ)2

2 ⟩ and Cx = {λ ∈ RK : ⟨λ, i⋆(µ)− x⟩ < 0}. Evaluating
Fµ(ω) is required to solve (1), but also in the design of an efficient stopping rule. Our first con-
tribution is MCP (Most-Confusing-Parameter), a polynomial time algorithm able to approximate
Fµ(ω) for any given µ and ω. The algorithm’s name refers to the fact that by computing Fµ(ω), we
implicitly identify the most confusing parameter λ⋆ ∈ arg infλ∈Alt(µ)⟨ω, (µ−λ)2

2 ⟩. The design of
MCP leverages a Lagrangian relaxation of the optimization problem defining fx(ω,µ) and exploits
the fact that the Lagrange dual function linearly depends on x. In turn, this linearity allows us to
make use of the LM Oracle. From these observations, we show that computing Fµ(ω) boils down to
solving a two-player game, for which one of the players can simply update her strategy using the LM
Oracle. We prove the following informally stated theorem quantifying the performance of the MCP
algorithm (see Theorem 3 for a more precise statement).
Theorem 1. For any (ω,µ), the MCP algorithm with precision ϵ and certainty parameter θ returns
F̂ and x̂ satisfying Pµ[Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)] ≥ 1− θ and F̂ = fx̂(ω,µ). The number of
calls to the LM Oracle is, almost surely, at most polynomial in K, ϵ−1, and ln θ−1.

The Perturbed Frank-Wolfe Sampling (P-FWS) algorithm. The MCP algorithm allows us to solve
the lower-bound problem (1) for any given µ. The latter is initially unknown, but could be estimated.
A Track-and-Stop algorithm [GK16] solving (1) with this plug-in estimator in each round would
yield asymptotically minimal sample complexity. It would however be computationally expensive. To
circumvent this difficulty, as in [WTP21], our algorithm, P-FWS, performs a single iteration of the
Frank-Wolfe algorithm for the program (1) instantiated with an estimator of µ. To apply the Frank-
Wolfe algorithm, P-FWS uses stochastic smoothing techniques to approximate the non-differentiable
objective function Fµ by a smooth function. To estimate the gradient of the latter, P-FWS leverages
both the LM Oracle and the MCP algorithm (more specifically its second output x̂). Finally, P-FWS
stopping rule takes the form of a classical Generalized Likelihood Ratio Test (GLRT) where the
estimated objective function is compared to a time-dependent threshold. Hence the stopping rule also
requires the MCP algorithm. We analyze the sample and computational complexities of P-FWS. Our
main results are summarized in the following theorem (refer to Theorem 4 for details).
Theorem 2. For any δ ∈ (0, 1), P-FWS is δ-PAC, and for any (ϵ, ϵ̃) ∈ (0, 1) small enough, its
sample complexity satisfies:

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ ×H
(
1

δ
· c(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = ln(x) + lnln(x), c > 0 is a universal constant, and Ψ(ϵ, ϵ̃) is polynomial in ϵ−1, ϵ̃−1,
K, ∥µ∥∞, and△−1

min, where△min = minx̸=i⋆(µ)⟨i⋆(µ)− x,µ⟩. Under P-FWS, the number of LM
Oracle calls per round is at most polynomial in ln δ−1 and K. The total expected number of these
calls is also polynomial.

To the best of our knowledge, P-FWS is the first polynomial time best action identification algorithm
with minimal sample complexity in the high confidence regime (when δ tends to 0). Its sample
complexity is also polynomial in K in the moderate confidence regime.

2 Preliminaries

We start by introducing some notation. We use bold lowercase letters (e.g., x) for vectors, and bold
uppercase letter (e.g., A) for matrices. ⊙ (resp. ⊕) denotes the element-wise product (resp. sum over
Z2). For x ∈ RK , i ∈ N, xi = (xik)k∈[K] is the i-th element-wise power of x. D = maxx∈X ∥x∥1
denotes the maximum number of arms part of an action. For any µ ∈ Λ, we define the sub-optimality
gap of x ∈ X as△x(µ) = ⟨i⋆(µ)−x,µ⟩, and the minimal gap as△min(µ) = minx ̸=i⋆(µ)△x(µ).
Pµ (resp. Eµ) denotes the probability measure (resp. expectation) when the arm rewards are
parametrized by µ. Whenever it is clear from the context, we will drop µ for simplicity, e.g.
i⋆ = i⋆(µ),△x = △x(µ), and△min = minx̸=i⋆ △x. Refer to Appendix A for an exhaustive table
of notation.
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2.1 The lower-bound problem

Classical change-of-measure arguments lead to the asymptotic sample complexity lower bound
Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ) where the characteristic time is defined in (1). To have a chance to
develop a computationally efficient best action identification algorithm, we need that the sample
complexity lower bound grows at most polynomially in K. This is indeed the case as stated in the
following lemma, whose proof is provided in Appendix K.
Lemma 1. For any µ ∈ Λ, T ⋆(µ) ≤ 4KD△min(µ)

−2.

We will use first-order methods to solve the lower-bound problem, and to this aim, we will need to
evaluate the gradient w.r.t. ω of fx(ω,µ). We can apply the envelop theorem [WTP21] to show that
for (ω,µ) ∈ Σ+ × Λ,

∇ωfx(ω,µ) =
(µ− λ⋆

ω,µ(x))
2

2
,

where Σ+ = Σ ∩ RK
>0, λ⋆

ω,µ(x) = argminλ∈cl(Cx)⟨ω,
(µ−λ)2

2 ⟩ and cl (Cx) is the closure of Cx
(refer to Lemma 19 in Appendix G.2).

2.2 The Linear Maximization Oracle

As mentioned earlier, we assume that we have access to a computationally efficient Oracle, referred
to as the LM (Linear Maximization) Oracle, identifying the best action if µ is known. More precisely,
as in existing works in combinatorial semi-bandits [KWA+14, PPV19, PBVP20], we make the
following assumption.
Assumption 1. (i) There exists a polynomial-time algorithm identifying i⋆(v) for any v ∈ RK; (ii)
X is inclusion-wise maximal, i.e., there is no x,x′ ∈ X s.t. x < x′; (iii) for each k ∈ [K], there
exists x ∈ X such that xk = 1; (iv) |X | ≥ 2.

Assumption 1 holds for combinatorial sets including m-sets, spanning forests, bipartite matching, s-t
paths. For completeness, we verify the assumption for these action sets in Appendix J. In the design
of our MCP algorithm, we will actually need to solve for some v ∈ RK the linear maximization
problem max⟨x,v⟩ over X \ {i⋆(µ)}; in other words, we will probably need to identify the second
best action. Fortunately, this can be done in a computationally efficient manner under Assumption 1.
The following lemma formalizes this observation. Its proof, presented in Appendix J, is inspired by
Lawler’s m-best algorithm [Law72].
Lemma 2. Let v ∈ RK and x ∈ X . Under Assumption 1, there exists an algorithm that solves
maxx′∈X :x′ ̸=x ⟨v,x′⟩ by only making at most D queries to the LM Oracle.

3 Solving the lower bound problem: the MCP algorithm

Solving the lower bound problem first requires to evaluate its objective function Fµ(ω). A naive
approach, enumerating fx(ω,µ) for all x ∈ X \ {i⋆}, would be computationally infeasible. In this
section, we present and analyze MCP, an algorithm that approximates Fµ(ω) by calling the LM Oracle
a number of times growing at most polynomially in K.

3.1 Lagrangian relaxation

The first step towards the design of MCP consists in considering the Lagrangian relaxation of the
optimization problem defining fx(ω,µ) = infλ∈Cx⟨ω, (µ−λ)2

2 ⟩ (see e.g., [BV04, Vis21]). For any
(ω,µ) ∈ Σ+×Λ and x ̸= i⋆, the Lagrangian Lω,µ and Lagrange dual function gω,µ of this problem
are defined as, ∀α ≥ 0,

Lω,µ(λ,x, α) =

〈
ω,

(µ− λ)2

2

〉
+ α ⟨i⋆ − x,λ⟩ and gω,µ(x, α) = inf

λ∈RK
Lω,µ(λ,x, α),

respectively. The following proposition, proved in Appendix C.1, provides useful properties of gω,µ:
Proposition 1. Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆(µ)}.
(a) The Lagrange dual function is linear in x. More precisely, gω,µ(x, α) = cω,µ(α)+ ⟨ℓω,µ(α),x⟩
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where cω,µ(α) = α
〈
µ− α

2ω
−1, i⋆(µ)

〉
and ℓω,µ(α) = −α

(
µ+ α

2ω
−1 ⊙ (1K − 2i⋆(µ))

)
.

(b) gω,µ(x, ·) is strictly concave (for any fixed x).
(c) fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆

x = △x(µ)
⟨x⊕i⋆(µ),ω−1⟩ .

(d) ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞.

From Proposition 1 (c), strong duality holds for the program defining fx(ω,µ), and we conclude:

Fµ(ω) = min
x ̸=i⋆

max
α≥0

gω,µ(x, α). (3)

Fµ(ω) can hence be seen as the value in a two-player game. The aforementioned properties of the
Lagrange dual function will help to compute this value.

3.2 Solving the two-player game with no regret

There is a rich and growing literature on solving zero-sum games using no-regret algorithms, see for
example [RS13, ALLW18, DFG21, ZODS21]. Our game has the particularity that the x-player has
a discrete combinatorial action set whereas the α-player has a convex action set. Importantly, for
this game, we wish not only to estimate its value Fµ(ω) but also an equilibrium action xe such that
Fµ(ω) = maxα≥0 gω,µ(xe, α). Indeed, an estimate of xe will be needed when implementing the
Frank-Wolfe algorithm and more specifically when estimating the gradient of Fµ(ω). To return such
an estimate, one could think of leveraging results from the recent literature on last-iterate convergence,
see e.g. [DP19, GPDO20, LNP+21, WLZL21, APFS22, AAS+23]. However, most of these results
concern saddle-point problems only, and are not applicable in our setting. Here, we adopt a much
simpler solution, and take advantage of the properties of the Lagrange dual function gω,µ(x, α) to
design an iterative procedure directly leading to estimates of (Fµ(ω),xe). In this procedure, the two
players successively update their actions until a stopping criterion is met, say up to the N -th iterations.
The procedure generates a sequence {(x(n), α(n))}1≤n≤N , and from this sequence, estimates (F̂ , x̂)
of (Fµ(ω),xe). The details of the resulting MCP algorithm are presented in Algorithm 1.

x-player. We use a variant of the Follow-the-Perturbed-Leader (FTPL) algorithm [Han57, KV05].
The x-player updates her action as follows:

x(n) ∈ argmin
x ̸=i⋆

(
n−1∑

m=1

gω,µ(x, α
(m)) +

〈Zn

ηn
,x

〉)
= argmin

x ̸=i⋆

(〈
n−1∑

m=1

ℓω,µ(α
(m)) +

Zn

ηn
,x

〉)
,

where Zn is a random vector, exponentially distributed and with unit mean ({Zn}n≥1 are i.i.d.).
Compared to the standard FTPL algorithm, we vary learning rate ηn over time to get anytime
guarantees (as we do not know a priori when the iterative procedure will stop). This kind of time-
varying learning rate was also used in [Neu15] with a similar motivation. Note that thanks to the
linearity of gω,µ and Lemma 2, the x-player update can be computed using at most D calls to the LM
Oracle.

α-player and MCP outputs. From Proposition 1, fx(ω,µ) = maxα≥0 gω,µ(x, α). This suggests
that the α-player can just implement a best-response strategy: after the x-player action x(n) is selected,
the α-player chooses α(n) = α⋆

x(n) =
△

x(n) (µ)

⟨x(n)⊕i⋆(µ),ω−1⟩ . This choice ensures that fx(n)(ω,µ) =

gω,µ(x
(n), α(n)), and suggests natural outputs for MCP: should it stops after N iterations, it can

return F̂ = minn∈[N ] gω,µ(x
(n), α(n)) and x̂ ∈ argminn∈[N ] gω,µ(x

(n), α(n)).

Stopping criterion. The design of the MCP stopping criterion relies on the convergence analysis and
regret from the x-player perspective of the above iterative procedure, which we present in the next
subsection. This convergence will be controlled by ℓω,µ(α

⋆
x) and its upper bound Lω,µ derived in

Proposition 1. Introducing cθ = Lω,µ(4
√
K(lnK + 1)+

√
ln(θ−1)/2), the MCP stopping criterion

is:
√
n > cθ(1 + ϵ)/(ϵF̂ ). Since

√
n strictly increases with n and since F̂ ≥ Fµ(ω), this criterion

ensures that the algorithm terminates in a finite number of iterates. Moreover, as shown in the
next subsection, it also ensures that F̂ returned by MCP is an (1 + ϵ)-approximation of Fµ(ω) with
probability at least 1− θ.

5
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Algorithm 1: (ϵ, θ)-MCP(ω,µ)

initialization: n = 1, F̂ =∞, cθ = Lω,µ

(
4
√
K(lnK + 1) +

√
ln(θ−1)/2

)
;

while (n = 1) or (n > 1 and
√
n ≤ cθ(1 + ϵ)/(ϵF̂ )) do

Sample Zn ∼ exp(1)K and set ηn =
√
K(lnK + 1)/(4nL2

ω,µ);

x(n) ← argminx ̸=i⋆(µ)

(∑n−1
m=1 gω,µ(x, α

(m)) + ⟨Zn,x⟩ /ηn
)

(ties broken arbitrarily);

α(n) ← argmaxα≥0 gω,µ(x
(n), α) (uniqueness ensured by Proposition 1 (c));

if gω,µ(x
(n), α(n)) < F̂ then (F̂ , x̂)← (gω,µ(x

(n), α(n)),x(n)) ;
n← n+ 1;

end
return (F̂ , x̂);

3.3 Performance analysis of the MCP algorithm

We start the analysis by quantifying the regret from the x-player perspective of MCP before its stops.
The following lemma is proved in Appendix C.3.
Lemma 3. Let N ∈ N. Under (ϵ, θ)-MCP(ω,µ),

P

[
1

N

N∑

n=1

gω,µ(x
(n), α(n))− 1

N
min
x̸=i⋆

N∑

n=1

gω,µ(x, α
(n)) ≤ cθ√

N

]
≥ 1− θ.

Observe that on the one hand,

1

N

N∑

n=1

gω,µ(x
(n), α(n)) ≥ min

n∈[N ]
gω,µ(x

(n), α(n)) = F̂ (4)

always holds. On the other hand, if xe ∈ argminx ̸=i⋆ maxα≥0 gω,µ(x, α), then we have:

1

N
min
x ̸=i⋆

N∑

n=1

gω,µ(x, α
(n)) ≤ 1

N

N∑

n=1

gω,µ(xe, α
(n)) ≤ max

α≥0
gω,µ(xe, α) = Fµ(ω). (5)

We conclude that for N such that
√
N ≥ cθ(1+ϵ)

ϵF̂
, Lemma 3 together with the inequalities (4)

and (5) imply that F̂ − Fµ(ω) ≤ cθ√
N
≤ ϵF̂

1+ϵ holds with probability at least 1 − θ. Hence

P
[
F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ. From this observation, we essentially deduce the following

theorem, whose complete proof is given in Appendix C.2.
Theorem 3. Let ϵ, θ ∈ (0, 1). Under Assumption 1, for any (ω,µ) ∈ Σ+ × Λ, the (ϵ, θ)-MCP(ω,µ)

algorithm outputs (F̂ , x̂) satisfying P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ and F̂ =

maxα≥0 gω,µ(x̂, α). Moreover, the number of LM Oracle calls the algorithm does is almost surely at

most
⌈

c2θ(1+ϵ)2

ϵ2Fµ(ω)2

⌉
= O

(
∥µ∥4

∞∥ω−1∥2∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)
.

4 The Perturbed Frank-Wolfe Sampling (P-FWS) algorithm

To identify an optimal sampling strategy, rather than solving the lower-bound problem in each round
as a Track-and-Stop algorithm would [GK16], we devise P-FWS, an algorithm that performs a single
iteration of the Frank-Wolfe algorithm for the lower-bound problem instantiated with an estimator
of µ. This requires us to first smooth the objective function Fµ(ω) = minx ̸=i⋆ fx(ω,µ) (the latter
is not differentiable at points ω where the min is achieved for several sub-optimal actions x). To
this aim, we cannot leverage the same technique as in [WTP21], where r-subdifferential subspaces
are built from gradients of fx(ω,µ). These subspaces could indeed be generated by a number of
vectors (here gradients) exponentially growing with K. Instead, to cope with the combinatorial
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decision sets, P-FWS applies more standard stochastic smoothing techniques as described in the
next subsection. All the ingredients of P-FWS are gathered in §4.2. By design, the algorithm just
leverages the MCP algorithm as a subroutine, and hence only requires the LM Oracle. In §4.3, we
analyze the performance of P-FWS.

4.1 Smoothing the objective function Fµ

Here, we present and analyze a standard stochastic technique to smooth a function Φ. In P-FWS,
this technique will be applied to the objective function Φ = Fµ. Let Φ : RK

>0 7→ R be a concave
and ℓ-Lipschitz function. Assume that the set of points where Φ is not differentiable is of Lebesgue-
measure zero. To smooth Φ, we can take its average value in a neighborhood of the point considered,
see e.g. [FKM05]. Formally, we define the stochastic smoothed approximate of Φ as:

Φ̄η(ω) = EZ∼Uniform(B2)[Φ(ω + ηZ)] , (6)

where B2 = {v ∈ RK : ∥v∥2 ≤ 1} and η ∈ (0,mink∈[K] ωk). The following proposition lists
several properties of this smoothed function, and gathers together some of the results from [DBW12],
see Appendix H for more details.

Proposition 2. For any ω ∈ Σ+ and η ∈ (0,mink∈[K] ωk), Φ̄η satisfies: (i) Φ(ω)− ηℓ ≤ Φ̄η(ω) ≤
Φ(ω); (ii) ∇Φ̄µ,η(ω) = EZ∼Uniform(B2)[∇Φµ(ω + ηZ)]; (iii) Φ̄η is ℓK

η -smooth; (iv) if η > η′ > 0,
then Φ̄η′(ω) ≥ Φ̄η(ω).

Note that with (i), we may control the approximation error between Φ̄η and Φ by η. (ii) and
(iii) ensure the differentiability and smoothness of Φ̄η respectively. (iii) is equivalent to Φ̄η(ω

′) ≤
Φ̄η(ω)+

〈
∇Φ̄η(ω),ω′ − ω

〉
+ ℓK

2η ∥ω − ω′∥22 , ∀ω,ω′ ∈ Σ+. Finally, (iv) stems from the concavity
of Φ, and implies that the value Φη(ω) monotonously increases while η decreases, and it is upper
bounded by Φ(ω) thanks to (i). The above results hold for Φ = Fµ. Indeed, first it is clear that the
definition (2) of Fµ can be extended to RK ; then, it can be shown that Fµ is Lipschitz-continuous
and almost-everywhere differentiable – refer to Appendices I and H for formal proofs.

4.2 The algorithm

Before presenting P-FWS, we need to introduce the following notation. For t ≥ 1, k ∈ [K], we define
Nk(t) =

∑t
s=1 1{xk(s) = 1}, ω̂k(t) = Nk(t)/t, and µ̂k(t) =

∑t
s=1 yk(s)1{xk(s) = 1} /Nk(t)

when Nk(t) > 0.

Sampling rule. The design of the sampling rule is driven by the following objectives: (i) the empirical
allocation should converge to the solution of the lower-bound problem (1), and (ii) the number of
calls to the LM Oracle should be controlled. To meet the first objective, we need in the Frank-Wolfe
updates to plug an accurate estimator of µ in. The accuracy of our estimator will be guaranteed
by alternating between forced exploration and FW update sampling phases. Now for the second
objective, we also use forced exploration phases when in a Frank-Wolfe update, the required number
of calls to the LM Oracle predicted by the upper bound presented in Theorem 3 is too large. In view
of Lemma 1 and Theorem 3, this happens in round t if ∥µ̂(t − 1)∥∞ or △min(µ̂(t − 1))−1 is too
large. Next, we describe the forced exploration and Frank-Wolfe update phases in detail.

Forced exploration. Initially, P-FWS applies the LM Oracle to compute the forced exploration set
X0 = {i⋆(ek) : k ∈ [K]}, where ek is the K-dimensional vector whose k-th component is equal
to one and zero elsewhere. P-FWS then selects each action in X0 once. Note that Assumption 1
(iii) ensures that the k-th component of i⋆(ek) is equal to one. In turn, this ensures that X0 is a [K]-
covering set, and that playing actions from X0 is enough to estimate µ. P-FWS starts an exploration
phase at rounds t such that

√
t/ |X0| is an integer or such that the maximum of△min(µ̂(t− 1))−1

and ∥µ̂(t− 1)∥∞ is larger than
√
t− 1. Whenever this happens, P-FWS pulls each x ∈ X0 once.

Frank-Wolfe updates. When in round t, the algorithm is not in a forced exploration phase, it im-
plements an iteration of the Frank-Wolfe algorithm applied to maximize the smoothed function
F̄µ̂(t−1),ηt

(ω̂(t − 1)) = EZ∼Uniform(B2)

[
Fµ̂(t−1)(ω̂(t− 1) + ηtZ)

]
. The sequence of parameters

{ηt}t≥1 is chosen to ensure that ηt chosen in (0,mink ω̂k(t)), and hence ω̂(t − 1) + ηtZ ∈
RK

>0. Also note that in a round t where the algorithm is not in a forced exploration phase,
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Algorithm 2: P-FWS ({(ϵt, ηt, nt, ρt, θt)}t)
initialization:

for k = 1, . . . ,K do
X0 ← argmaxx∈X ⟨ek,x⟩ (tie broken arbitrarily)

end
Sample x ∈ X0 in a round-robin manner for 4|X0| rounds; update µ̂(4|X0|) and ω̂(4|X0|);

for t = 4|X0|+ 1, · · · do
if
√
t/|X0| ∈ N or max{△min(µ̂(t− 1))−1, ∥µ̂(t− 1)∥∞} >

√
t− 1 then

Sample each x ∈ X0 once, update µ̂(t) and ω̂(t), and t← t+ |X0| − 1;
else

Compute∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) by (ρt, θt)-MCP algorithm;

x(t)← i⋆
(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)

;
Sample x(t) and update µ̂(t) and ω̂(t);

end
if max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t then

F̂t ←
(
ϵt, δ/t

2
)

-MCP(ω̂(t), µ̂(t));

if tF̂t > (1 + ϵt)β
(
t,
(
1− 1

4|X0|

)
δ
)

then break;

end
return ı̂ = i⋆(µ̂(t));

by definition △min(µ̂(t − 1)) > 0. This implies that µ̂(t − 1) ∈ Λ and that Fµ̂(t−1) and
F̄µ̂(t−1),ηt

(ω̂(t − 1)) are well-defined. Now an ideal FW update would consist in playing an
action i⋆(∇F̄µ̂(t−1),ηt

(ω̂(t − 1))) = argmaxx∈X
〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
, see e.g. [Jag13].

Unfortunately, we do not have access to ∇F̄µ̂(t−1),ηt
(ω̂(t − 1)). But the latter can be approxi-

mated, as suggested in Proposition 2 (ii), by ∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) = 1

nt

∑nt

m=1∇fx̂m
(ω̂(t−

1) + ηtZm, µ̂(t − 1)), where Z1, · · · ,Znt

i.i.d.∼ Uniform(B2), x̂m is the action return by
(ρt, θt)-MCP(ω̂(t − 1) + ηtZm, µ̂(t − 1)). P-FWS uses this approximation and the LM Oracle
to select the action: x(t) ∈ i⋆

(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)
. The choices of the parameters ηt, nt,

ρt and θt do matter. ηt impacts the sample complexity and should converge to 0 as t→∞ so that
F̄µ,ηt(ω)→ Fµ(ω) at any point ω ∈ Σ+ (this is a consequence of Proposition 2 (i)(iv)). ηt should
not decay too fast however as it would alter the smoothness of F̄µ,ηt

. We will show that ηt should
actually decay as 1/

√
t. (nt, ρt, θt) impact the trade-off between the sample complexity and the

computational complexity of the algorithm. We let nt → ∞ and (ρt, θt) → 0 as t → ∞ so that〈
∇F̃µ,ηt,nt

(ω)−∇F̄µ,ηt
(ω),x

〉
→ 0 for any (ω,x) ∈ Σ+ ×X .

Stopping and decision rule. As often in best arm identification algorithms, the P-FWS stopping rule
takes the form of a GLRT:

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,

(
1− 1

4|X0|

)
δ

)
,max

{
△min(µ̂(t))

−1, ∥µ̂(t)∥∞
}
≤
√
t

}
,

(7)
where ϵt ∈ R>0, F̂t is returned by the (ϵt, δ/t2)-MCP(ω̂(t), µ̂(t)) algorithm. The function β satisfies

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ[i

⋆(µ̂(t)) ̸= i⋆(µ)] ≤ δ) , (8)

∃c1, c2 > 0 : ∀t ≥ c1, β(t, δ) ≤ ln

(
c2t

δ

)
. (9)

Examples of function β satisfying the above conditions can be found in [GK16, JP20, KK21]. The
condition (8) will ensure the δ-correctness of P-FWS, whereas (9) will control its sample complexity.
Finally, the action returned by P-FWS is simply defined as ı̂ = i⋆(µ̂(τ)). The complete pseudo-code
of P-FWS is presented in Algorithm 2.3

3Our Julia implementation could be found at https://github.com/rctzeng/NeurIPS2023-PerturbedFWS.

8

107



4.3 Non-asymptotic performance analysis of P-FWS

The following theorem provides an upper bound of the sample complexity of P-FWS valid for any
confidence level δ, as well as the computational complexity of the algorithm.
Theorem 4. Let µ ∈ Λ and δ ∈ (0, 1). If P-FWS is parametrized using

(ϵt, ηt, nt, ρt, θt) =

(
t−

1
9 ,

1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2|X0|
,

1

t
1
4 e

√
t

)
, (10)

then (i) the algorithm finishes in finite time almost surely and Pµ [̂ı ̸= i⋆(µ)] ≤ δ; (ii) its sam-
ple complexity satisfies Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1 and for any ϵ, ϵ̃ ∈ (0, 1) with

ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 },

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
1

δ
· 4c2

3
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+1 and Ψ(ϵ, ϵ̃) (refer to (34) for a detailed expression) is polynomial in
ϵ−1, ϵ̃−1, K, ∥µ∥∞, and△min(µ)

−1; (iii) the expected number of LM Oracle calls is upper bounded
by a polynomial in ln δ−1, K, ∥µ∥∞, and△min(µ)

−1.

The above theorem establishes the statistical asymptotic optimality of P-FWS since it implies that
lim supδ→0 Eµ[τ ] / ln(1/δ) ≤ (1 + ϵ̃)2/(T ⋆(µ)−1 − 6ϵ). This upper bound matches the sample
complexity lower bound (1) when ϵ→ 0 and ϵ̃→ 0.

Proof sketch. The complete proof of Theorem 4 is presented in Appendix D.

(i) Correctness. To establish the δ-correctness of the algorithm, we introduce the event G under which
F̂t, computed by (ϵt, δ/t

2)-MCP(ω̂(t), µ̂(t)), is an (1 + ϵt)-approximation of Fµ̂(t)(ω̂(t)) in each
round t ≥ 4|X0|+ 1. From Theorem 3, we deduce that Pµ[Gc] ≤

∑∞
t=4|X0|+1 δ/t

2 ≤ δ/4|X0|. In
view of (8), this implies that Pµ [̂ı ̸= i⋆(µ)] ≤ δ.

(ii) Non-asymptotic sample complexity upper bound.
Step 1. (Concentration and certainty equivalence) We first define two good events, E(1)t and E(2)t . E(2)t

corresponds to the event where µ̂(t) is close to µ, and its occurrence probability can be controlled
using the forced exploration rounds and concentration inequalities. Under E(1)t , the selected action
x(t) is close to the ideal FW update. Again using concentration results and the performance
guarantees of MCP given in Theorem 3, we can control the occurrence probability of E(2)t . Overall,
we show that

∑∞
t=1 Pµ[(E(1)t ∩ E(2)t )c] < ∞. To this aim, we derive several important continuity

results presented in Appendix G. These results essentially allow us to study the convergence of the
smoothed FW updates as if the certainty equivalence principle held, i.e., as if µ̂(t) = µ.
Step 2. (Convergence of the smoothed FW updates) We study the convergence assuming that (E(1)t ∩
E(2)t ) holds. We first show that F̄µ,ηt

is ℓ-Lipschitz and smooth for ℓ = 2D2 ∥µ∥2∞, see Appendices
H and I. Then, in Appendix E, we establish that the dynamics of ϕt = maxω∈Σ Fµ(ω)− Fµ(ω̂(t))

satisfy tϕt ≤ (t − 1)ϕt−1 + ℓ
(
ηt−1 +

K2

2tηt

)
. Observe that, as mentioned earlier, 1/

√
t is indeed

the optimal scaling choice for ηt. We deduce that after a certain finite number T1 of rounds, ϕt is
sufficiently small and max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t.

Step 3. Finally, we observe that Eµ[τ ] ≤ T1 +
∑∞

t=T1
Pµ

[
tF̂t ≤ (1 + ϵt)β

(
t, (1− 1

4|X0| )δ
)]

+
∑∞

t=T1+1 Pµ

[
(E(1)t ∩ E(2)t )c

]
, and show that the second term in the r.h.s. in this inequality is

equivalent to T ⋆(µ) ln(1/δ) as δ → 0 using the property of the function β defining the stopping
threshold and similar arguments as those used in [GK16, WTP21].

(iii) Expected number of LM Oracle calls. The MCP algorithm is called to compute F̂t and to
perform the FW update only in rounds t such that max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t. Thus,

from Theorem 3 and Lemma 1, the number of LM Oracle calls per-round is a polynomial in t and
K. As the Eµ[τ ] is polynomial (in ln δ−1, K, ∥µ∥∞ and△−1

min), the expected number of LM Oracle
calls is also polynomial in the same variables.
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5 Related Work

We provide an exhaustive survey of the related literature in Appendix B. To summarize, to the best of
our knowledge, CombGame [JMKK21] is the state-of-the-art algorithm for BAI in combinatorial
semi-bandits in the high confidence regimes. A complete comparison to P-FWS is presented in
Appendix B. CombGame was initially introduced in [DKM19] for classical bandit problems. There,
the lower-bound problem is casted as a two-player game and the authors propose to use no-regret
algorithms for each player to solve it. [JMKK21] adapts the algorithm for combinatorial semi-
bandits, and provides a non-asymptotic sample complexity upper bound matching (1) asymptotically.
However, the resulting algorithm requires to call an oracle solving the Most-Confusing-Parameter
problem as our MCP algorithm. The authors of [JMKK21] conjectured the existence of such a
computationally efficient oracle, and we establish this result here.

6 Conclusion

In this paper, we have presented P-FWS, the first computationally efficient and statistically optimal
algorithm for the best arm identification problem in combinatorial semi-bandits. For this problem, we
have studied the computational-statistical trade-off through the analysis of the optimization problem
leading to instance-specific sample complexity lower bounds. This approach can be extended to
study the computational-statistical gap in other learning tasks. Of particular interest are problems
with an underlying structure (e.g. linear bandits [DMSV20, JP20], or RL in linear / low rank MDPs
[AKKS20]). Most results on these problems are concerned with statistical efficiency, and ignore
computational issues.
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A Table of Notation

Problem setting
K Number of arms

[m] for any m ∈ N The set {1, 2 . . . ,m}
δ Required uncertainty

µ ∈ RK Vector of the expected rewards of the various arms
Eµ and Pµ The expectation and probability measure corresponding to µ

Λ {µ ∈ RK : |i⋆(µ)| = 1}
i⋆(µ) Best arm under parameter µ
X Set of actions in {0, 1}K
D maxx∈X ∥x∥1

△x(µ) ⟨i⋆(µ)− x,µ⟩
△min(µ) minx̸=i⋆(µ)△x(µ)

Notation related to a given algorithm
Nk(t) Number of pulls of arm k up to time t
ω̂k(t) Nk(t)/t
x(t) The action taken in time t
yk(t) Random reward received if xk(t) = 1
µ̂k(t)

∑t
s=1 yk(s)1{xk(s) = 1}/Nk(t)

τ Stopping time
ı̂ Recommended action

Notation used for sets and vectors
⊙ Elementwise product
⊕ Elementwise sum over Z2

xi The i-th elementwise power of x ∈ RK , i.e., (xi
k)k∈[K]

cl (S) The closure of set S
ek the K-dimensional vector whose k-th component is equal to one and zero

elsewhere

Properties for lower bound
d(µ, µ′) KL divergence between the distributions parametrized by µ and µ′

kl(a, b) KL divergence between two Bernoulli distributions of means a and b
Alt(µ) {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}

Σ {∑x∈X wxx : w ∈ Σ|X|} where ΣN is a (N − 1)-dimensional simplex
Σ+ Σ ∩ RK

>0

Notation for MCP
Fµ(ω) minx̸=i⋆(µ) fx(ω,µ)

fx(ω,µ) infλ∈Cx⟨ω, (µ−λ)2

2
⟩, where Cx = {λ ∈ RK : ⟨λ, i⋆(µ)− x⟩ < 0}

Lω,µ(λ,x, α) ⟨ω, (µ−λ)2

2
⟩+ α ⟨i⋆(µ)− x,λ⟩

gω,µ(x, α) infλ∈RK Lω,µ(λ,x, α)

Notation for P-FWS
X0 A [K]-covering set
F̂t MCP-approximated value of Fµ̂(t)(ω̂(t)) for stopping rule

F̄µ,η(·) EZ∼Uniform(B2)[∇Fµ(·+ ηZ)] where B2 = {v ∈ RK : ∥v∥2 ≤ 1}
F̃µ,η,n The empirical n-sample estimate of F̄µ,η

ℓ Lipschitz constant of Fµ
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B Further related work

Combinatorial semi-bandits [CBL12] have found numerous applications including online ranking
[DKC21], network routing [CLK+14, KWA+14], loan assignment [KWA+14], path planning prob-
lem [JMKK21], and influence marketing [Per22]). We do not discuss these applications here, but
rather focus the literature that is the most relevant to our analysis and results.

Solving the lower-bound problem in combinatorial semi-bandits. We are not aware of any
computationally efficient algorithm to solve the lower-bound problem, or to compute its objective
function. To the best of our knowledge, MCP is the first algorithm to do so. A work closed to ours is
[CCG21a] for combinatorial semi-bandits but in the regret minimization. Regret minimization yields
a different lower-bound problem. There exits a statistically optimal algorithm [CMP17], called OSSB,
that matches the regret lower bound by [CTMSP+15]. OSSB requires to solve the lower-bound
problem in each round, and the authors [CCG21a] are the first to investigate whether this is at all
possible in a computationally efficient way. They establish that if budgeted-linear maximization
(BLM) [RG96, BBGS11] can be solved within an ε-approximation factor for the combinatorial set
X , then the lower-bound problem can be approximately solved with a precision depending on ε. As
a consequence, the approach leads to an algorithm with asymptotically minimal regret only if one
has access to an exact BLM solver. This is the case for m-sets and s-t paths but this is not the case
for spanning trees and perfect matchings. For the latter case, as mentioned [CCG21a], an algorithm
using an approximately correct BLM solver would not be statistically optimal.

Best arm identification in combinatorial semi-bandits. Many tasks related to combinatorial best
arm identification are formulated in the transductive setting [JMKK21], where the set A ⊆ {0, 1}K
available for exploration is not necessarily the same as the setX ⊆ {0, 1}K for decision. The minimal
sample complexity in the transductive setting is exactly (1) with Σ replaced with {∑x∈A wxx :
ω ∈ Σ|A|} - see (58) in Appendix L for details. Two most studied tasks are combinatorial multi-arm
bandit (C-MB) where A = {ek}k∈[K] and the best action identification (C-BAI) where A = X .
The former is arguably simpler than the latter if we compare the corresponding minimal sample
complexities (note that ΣK ⊇ Σ). We note that our results for C-BAI can be easily generalized to the
transductive setting (see Appendix L).

Prior works mainly focus on the C-MB task. UCB-based [KTAS12, CLK+14] and elimination-
based [CGL16, CGL+17, KSJJ+20] approaches are popular. Among these, EfficientGapElim
[CGL+17] achieves the lowest sample complexityO(T ⋆(µ)(ln δ−1+ln2△−1

min(ln ln△−1
min+ln|X |))

with high probability4, but its computational complexity is hard to analyze. Peace [KSJJ+20], an-
other elimination-based approach by experimental design, requires with high probability a polynomial
number of the LM Oracle calls in total. The sample complexity of Peace has a δ-dependent term
(scaling as KT ⋆(µ) ln δ−1) worse than EfficientGapElim. Overall, none of these are statisti-
cally optimal when δ → 0. Note that algorithms for linear best-arm identification [DMSV20, WTP21]
are applicable to C-MB but not to C-BAI and the general transductive setting.

For the task of C-BAI, we are only aware of two works: GCB-PE [DKC21] and CombGame
[JMKK21]. GCB-PE is a UCB-based algorithm with guarantees on the sample complexity and
computational complexity valid with high probability only. CombGame [JMKK21] is proposed
for the transductive setting, and its design inherits from [DKM19] that interprets the lower-bound
problem and more precisely T ⋆(µ)−1 as the value of a two-player game (a ω-player and a λ-
player)5. Assuming that an MCP oracle is available, CombGame leverages Frank-Wolfe algorithms,
namely OFW [HK12] and LLOO [GH16], for the ω-player and the MCP algorithm for the λ-player.
[JMKK21] leaves the existence of such an oracle running in polynomial time as an open problem.
Our MCP algorithm resolves this issue. CombGame is statistically optimal in the high confidence
regime but has no clear guarantees in the moderate regime [BGK22].

We wish to finally mention an algorithm that has inspired the design of P-FWS. This algorithm is
referred to as Frank-Wolfe Sampling (FWS) [WTP21]. FWS is optimal in high confidence regime

4In Section 4.5 in [CGL+17], the authors provide a lemma stating that: if parallel simulation is additionally
allowed, then any high-probability sample complexity upper bound can be converted to an upper bound in
expectation.

5Note that this two-player game is different than the two-player game involved in our algorithm MCP.
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but is not computationally efficient for combinatorial semi-bandits. For example, to deal with
the non-smoothness issue of the objective function Fµ, FWS needs to construct the so-called r-
subdifferentiable spaces and to optimize a linear function on these spaces. Unfortunately, these
spaces can be generated by a number of vectors exponentially increasing with K in combinatorial
semi-bandits. Moreover, in moderate confidence regime, the sample complexity upper bound derived
in [WTP21] has an exponential dependence in K.

All the relevant algorithms, their sample complexity guarantees and computational complexity are
summarized in Table 1.

Table 1: Algorithms for best-arm identification in combinatorial semi-bandits with fixed confidence
and their performance.

Algorithm Task Instance-specific Sample Complexity Computational Complexity

Non-asympt. Asympt. Opt. Needed (Provided) Total LM oracle calls

Peace C-MB poly
(
K,△−1

min, ln δ
−1
)

w.h.p. ✗ LP solver (✓) poly
(
K,△−1

min, δ
−1
)

w.h.p.
GCB-PE C-BAI poly

(
K,△−1

min, ln δ
−1
)

w.h.p. ✗ - poly
(
K,△−1

min, ln δ
−1
)

w.h.p.
CombGame Trans. ✗ (incomparable) ✓ MCP (✗) ✗

P-FWS Trans. poly
(
K,△−1

min, ln δ
−1
)

✓ MCP (✓) poly
(
K,△−1

min, ln δ
−1
)
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C Results related to our (ϵ, θ)-MCP algorithm

C.1 Properties of Lagrangian dual of fx

Proposition 1. Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆(µ)}.
(a) The Lagrange dual function is linear in x. More precisely, gω,µ(x, α) = cω,µ(α)+ ⟨ℓω,µ(α),x⟩
where cω,µ(α) = α

〈
µ− α

2ω
−1, i⋆(µ)

〉
and ℓω,µ(α) = −α

(
µ+ α

2ω
−1 ⊙ (1K − 2i⋆(µ))

)
.

(b) gω,µ(x, ·) is strictly concave (for any fixed x).
(c) fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆

x = △x(µ)
⟨x⊕i⋆(µ),ω−1⟩ .

(d) ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞.

Proof Fix any (ω,µ) ∈ Σ+ × Λ and let i⋆ = i⋆(µ) for short. For convenience, the definition of
Lω,µ and gω,µ are restated:

Lω,µ(λ,x, α) =

〈
ω,

(µ− λ)2

2

〉
+ α ⟨i⋆ − x,λ⟩ and gω,µ(x, α) = inf

λ∈RK
Lω,µ(λ,x, α).

Proof of (a): linearity of gω,µ(·, α): Let λ⋆
ω,µ(x, α) ∈ arg infλ∈RK Lω,µ(λ,x, α). The first-order

condition implies that 0K = ∇λLω,µ(λ
⋆
ω,µ(x, α),x, α) = ω ⊙ (λ⋆

ω,µ(x, α) − µ) + α(i⋆ − x),
which directly yields (as ω > 0K)

λ⋆
ω,µ(x, α) = µ+ αω−1 ⊙ (x− i⋆). (11)

We plug (11) into Lω,µ(λ
⋆
ω,µ(x, α),x, α) and directly obtain that

gω,µ(x, α) =

〈
ω,

α2

2
ω−2 ⊙ (x− i⋆)2

〉
+ α ⟨µ, i⋆ − x⟩ − α2

〈
ω−1, (x− i⋆)2

〉

= α ⟨µ, i⋆ − x⟩ − α2

2

〈
ω−1, (x− i⋆)2

〉
(12)

= cω,µ(α) + ⟨ℓω,µ(α),x⟩ , (13)

where (13) follows from a fact that (x− i⋆)2 = i⋆ − 2x⊙ i⋆ + x = i⋆ + x⊙ (1K − 2i⋆).

Proof of (b): strict concavity of gω,µ(x, ·): This is trivial from (12).

Proof of (c): fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆
x = △x(µ)

⟨x⊕i⋆,ω−1⟩ : For a fixed x ̸= i⋆,

by the first-order condition of (12), we find that the maximum of gω,µ(x, ·) is reached at

α⋆
x =

△x(µ)

⟨ω−1, (x− i⋆)2⟩ =
△x(µ)

⟨x⊕ i⋆,ω−1⟩ , (14)

where for the second equality, we use the assumption that i⋆ and x are binary vectors and hence
(x−i⋆)2 = x⊕i⋆. We now verify that (α⋆

x,λ
⋆
x), where λ⋆

x = λ⋆
ω,µ(x, α

⋆
x) (see (11)), satisfies KKT

conditions, which is equivalent to strong duality (refer to [Vis21, BV04]) under Slater’s condition
(there exists a λ ∈ RK such that the constraint is strict). Since x is a suboptimal action,△x(µ) is
positive, so is α⋆

x (dual feasibility). To verify ⟨λ⋆
x, i

⋆ − x⟩ ≤ 0 (primal feasibility), the definition of
λ⋆
ω,µ(·, ·), (11), yields

⟨λ⋆
x, i

⋆ − x⟩ = △x(µ) + α⋆
x

〈
ω−1 ⊙ (x− i⋆), (i⋆ − x)

〉

= △x(µ)− α⋆
x⟨ω−1,x⊕ i⋆⟩ = 0,

which implies that α⋆
x ⟨i⋆ − x,λ⋆

x⟩ = 0 (complementary slackness). Finally, stationarity holds
automatically as∇λLω,µ(λ

⋆
x,x, α) = 0 for all α.

Proof of (d): ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞: Following from the expression of

ℓω,µ(α), we have ℓω,µ(α
⋆
x) = −α⋆

xµ+
α⋆

x
2

2 ω−1 ⊙ (1K − 2i⋆). Observe that ∥µ∥1 ≤ K ∥µ∥∞ ≤
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K
∥∥ω−1

∥∥
∞ ∥µ∥∞ (as ω ∈ Σ+) and the coordinate of 1K−2i⋆ is either 1 or−1, a simple application

of triangle inequality leads to

∥ℓω,µ(α
⋆
x)∥1 ≤ K

∥∥ω−1
∥∥
∞

(
∥µ∥∞ +

α⋆
x

2

)
α⋆
x.

As for α⋆
x (see (14)),△x(µ) ≤ 2D ∥µ∥∞ and

〈
ω−1,x⊕ i⋆

〉
≥ mink ω

−1
k ≥ 1, hence we conclude

that ∥ℓω,µ(α
⋆
x)∥1 ≤ 2D(D + 1)K ∥µ∥2∞

∥∥ω−1
∥∥
∞ ≤ Lω,µ. □

C.2 Analysis of MCP

Theorem 3. Let ϵ, θ ∈ (0, 1). Under Assumption 1, for any (ω,µ) ∈ Σ+ × Λ, the (ϵ, θ)-MCP(ω,µ)
algorithm outputs (F̂ , x̂) satisfying

P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1− θ and F̂ = max

α≥0
gω,µ(x̂, α).

Moreover, the number of LM Oracle calls the algorithm does is almost surely at most
⌈
c2θ(1 + ϵ)2

ϵ2Fµ(ω)2

⌉
= O

(
∥µ∥4∞

∥∥ω−1
∥∥2
∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)
.

Proof Fix any (ω,µ) ∈ Σ+ × Λ and denote by i⋆ = i⋆(µ). Suppose Algorithm 1 reaches the
stopping criterion at the N -th iteration.

Guarantees on the outputs of MCP: By Proposition 1 (a),

N∑

n=1

gω,µ(x
(n), α(n))−min

x ̸=i⋆

N∑

n=1

gω,µ(x, α
(n)) =

N∑

n=1

〈
ℓω,µ(α

(n)),x(n)
〉
−min

x ̸=i⋆

N∑

n=1

〈
ℓω,µ(α

(n)),x
〉
.

The regret of x-player can be bounded by applying Lemma 3, resulting in:

P

[
N∑

n=1

gω,µ(x
(n), α(n))− min

x̸=i⋆

N∑

n=1

gω,µ(x, α
(n)) ≤ cθ

√
N

]
≥ 1− θ. (15)

To relate Fµ(ω) with (15), let xe be the minimizer attaining Fµ(ω) = fxe(ω,µ). Then,

min
x ̸=i⋆

N∑

n=1

gω,µ(x, α
(n)) ≤

N∑

n=1

gω,µ(xe, α
(n)) ≤ N max

α≥0
gω,µ(xe, α) = NFµ(ω). (16)

Recall that α(n) is chosen as the best response maxα≥0 gω,µ(x
(n), α) = gω,µ(x

(n), α(n)) and that
F̂ = minn∈[N ] gω,µ(x

(n), α(n)). These together with (16) imply that

N(F̂ − Fµ(ω)) ≤
N∑

n=1

gω,µ(x
(n), α(n))− min

x ̸=i⋆

N∑

n=1

gω,µ(x, α
(n)). (17)

A simple rearrangement on (15) and (17) implies that: with probability at least 1− θ,

F̂ − Fµ(ω) ≤ cθ√
N
≤ ϵ(F̂ − cθ√

N
) ≤ ϵFµ(ω),

where the second inequality follows from the stopping criterion that
√
N > cθ(1 + ϵ)/ϵF̂ , and the

last inequality simply comes from the rearrangement of the first inequality.

Computational cost: From the stopping criterion of MCP, we know that

N =

⌈
c2θ(1 + ϵ)2

ϵ2F̂ 2

⌉
≤
⌈
c2θ(1 + ϵ−1)2

Fµ(ω)2

⌉
= O



L2
ω,µ

(√
K lnK +

√
ln θ−1

)2

ϵ2Fµ(ω)2
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since F̂ ≥ Fµ(ω) and cθ = Lω,µ

(
4
√
K(lnK + 1) +

√
ln(θ−1)/2

)
. Finally, as computing each

x(n) takes at most D calls to LM Oracle, the total number of LM Oracle calls is

O



L2
ω,µD

(√
K lnK +

√
ln θ−1

)2

ϵ2Fµ(ω)2


 = O

(
∥µ∥4∞

∥∥ω−1
∥∥2
∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)

by recalling Lω,µ = 4D2K ∥µ∥2∞
∥∥ω−1

∥∥
∞ from Proposition 1 (d) and (

√
lnK +

√
ln θ−1)2 =

O(lnK ln θ−1). □

C.3 Regret analysis of Follow-the-Perturbed-Leader

In this subsection, we aim at proving Lemma 3, which is a direct consequence of Lemma 4. One can
find similar proofs in e.g. [KV05, Neu15, SN20]. However, the parameter ηn in our MCP algorithm
is varying and carefully chosen (without the knowledge of the last round), which makes the proof
slightly more complicated.

Lemma 3. Let N ∈ N. Under (ϵ, θ)-MCP(ω,µ), then

P

[
1

N

N∑

n=1

gω,µ(x
(n), α(n))− 1

N
min
x̸=i⋆

N∑

n=1

gω,µ(x, α
(n)) ≤ cθ√

N

]
≥ 1− θ.

Lemma 4. Let θ ∈ (0, 1) andM ⊆ {0, 1}K . Given an arbitrary sequence {ℓn}n≥1 of vectors in
RK whose length ∥ℓn∥1 is bounded by L > 0 for all n ∈ N. Suppose {x(n)}n≥1 is generated by

x(n) ∈ argmin
x∈M

(
n−1∑

m=1

⟨ℓm,x⟩+
〈Zn

ηn
,x

〉)
,

where Zn = (Z1,n, · · · ,ZK,n) is a random vector with uncorrelated exponentially distributed (with
unit mean) components, and ηn =

√
K(lnK + 1)/(4nL2). Then, for any N ∈ N,

P

[
N∑

n=1

〈
ℓn,x

(n)
〉
− min

x∈M

N∑

n=1

⟨ℓn,x⟩ ≤ L
√
N

(
4
√
K(lnK + 1) +

√
ln θ−1

2

)]
≥ 1− θ.

Proof of Lemma 4: We will prove this lemma as if {ℓn}n is chosen in advance since there exists
a standard technique for extending regret against oblivious player to the one against nonoblivious
one (see Lemma 4.1 in [CBL06]). For convenience, we introduce the following notation. Let
m⋆ (·) = argminx∈M⟨·,x⟩. Finally, further define global minimizer x⋆ = m⋆

(∑N
n=1 ℓn

)
and an

auxiliary vector b(n) = m⋆ (
∑n

m=1 ℓm +Z1/ηn).

It suffices to show the expected regret bound (18).

E

[
N∑

n=1

〈
ℓn,x

(n)
〉]
− min

x∈M

N∑

n=1

⟨ℓn,x⟩ ≤ 4L
√
NK(lnK + 1). (18)

This is because {
〈
ℓn,x

(n)
〉
− E

[〈
ℓn,x

(n)
〉]
}n forms a sequence of bounded martingale difference,

so an application of a concentration inequality (Lemma 6) with Vn =
〈
ℓn,x

(n)
〉
− E

[〈
ℓn,x

(n)
〉]

,
rn = L for n ∈ [N ], and s = L

√
N ln θ−1/2 gives that

P

[
N∑

n=1

〈
ℓn,x

(n)
〉
− E

[
N∑

n=1

〈
ℓn,x

(n)
〉]

> L

√
N ln θ−1

2

]
≤ θ

and combining this with (18) completes the proof.
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Proof of (18): We decompose the regret into two terms:

N∑

n=1

〈
ℓn,x

(n) − x⋆

〉
=

N∑

n=1

〈
b(n) − x⋆, ℓn

〉
+

N∑

n=1

〈
x(n) − b(n), ℓn

〉
.

(i). We show that E
[∑N

n=1

〈
b(n) − x⋆, ℓn

〉]
≤ K(lnK+1)

ηN
. Invoking Lemma 5 with x = x⋆

results in

E

[
N∑

n=1

〈
b(n) − x⋆, ℓn

〉]
≤ E

[〈
x⋆

ηN
−
(
b(1)

η1
+

N∑

n=2

(
1

ηn
− 1

ηn−1

)
b(n)

)
,Z1

〉]

≤ E

[
∥Z1∥∞

∥∥∥∥∥
x⋆

ηN
−
(
b(1)

η1
+

N∑

n=2

(
1

ηn
− 1

ηn−1

)
b(n)

)∥∥∥∥∥
1

]
,

where the last inequality uses Hölder’s inequality. As all the components of x⋆ and ηNb(1)

η1
+

∑N
n=2 ηN

(
1
ηn
− 1

ηn−1

)
b(n) are nonnegative and bounded by 1, the 1-norm of their difference is

bounded by K. It remains to show

E[∥Z1∥∞] =

∫ ∞

0

P
[
max

i
Z1,i ≥ x

]
dx ≤

∫ lnK

0

P
[
max

i
Z1,i ≥ x

]
dx+

∫ ∞

lnK

Ke−xdx ≤ lnK+1.

(ii). We show that E
[∑N

n=1

〈
x(n) − b(n), ℓn

〉]
≤ 2L2

∑N
n=1 ηn. Let the pdf of exp(1) be

π(·) = e−∥·∥1 .

E
[〈

b(n), ℓn

〉]
=

∫

z∈RK

〈
m⋆

(
ηn

n∑

m=1

ℓm + z

)
, ℓn

〉
dπ(z)

=

∫

y∈RK

〈
m⋆

(
ηn

n−1∑

m=1

ℓm + y

)
, ℓn

〉
dπ(y − ηnℓn)

=

∫

y∈RK

〈
m⋆

(
ηn

n−1∑

m=1

ℓm + y

)
, ℓn

〉
e−∥y−ηnℓn∥1+∥y∥1dπ(y).

Notice that the triangular inequality implies −∥y − ηnℓn∥1 + ∥y∥1 ≤ ∥ηnℓn∥1 ≤ ηnL and ex ≤
1 + 2x for all x ∈ (0, 1) (Taylor expansion), so recalling x(n) = m⋆

(
ηn
∑n−1

m=1 ℓm +Z1

)
, we

deduce that

N∑

n=1

E
[〈

x(n) − b(n), ℓn

〉]
≤

N∑

n=1

2ηnL

∫

z∈RK

〈
m⋆

(
ηn

n∑

m=1

ℓm + z

)
, ℓn

〉
dπ(z)

≤
N∑

n=1

2ηnL

∫

z∈RK

∥∥∥∥∥m
⋆

(
ηn

n∑

m=1

ℓm + z

)∥∥∥∥∥
∞
∥ℓn∥1 dπ(z) ≤ 2L2

N∑

n=1

ηn.

Finally, plugging ηn =
√

K(lnK+1)
4nL2 into (i). and (ii). directly concludes the proof. □

The following lemma is a result that can be found in [CBL06, H+16], we rewrite it here for complete-
ness.

Lemma 5. According to b(n) = m⋆ (ηn
∑n

m=1 ℓm +Z1), we can have

∀x ∈M,
N∑

n=1

〈
b(n) − x, ℓn

〉
≤
〈

x

ηN
,Z1

〉
−
〈
b(1)

η1
+

N∑

n=2

(
1

ηn
− 1

ηn−1

)
b(n),Z1

〉
. (19)
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Proof This is done by induction. For the base case, N = 1, as b(1) = m⋆ (ℓ1 +Z1/η1)
〈
b(1), ℓ1 +Z1/η1

〉
≤ ⟨x, ℓ1 +Z1/η1⟩

for any x ∈ M. A simple rearrangement yields (19). While considering N + 1, we suppose
(19) holds for all integers smaller than N + 1. For an arbitrary x ∈ M, the fact b(N+1) =

m⋆
(∑N+1

n=1 ℓn +Z1/ηN+1

)
directly implies that

〈
x,

N+1∑

n=1

ℓn +
Z1

ηN+1

〉
≥
〈
b(N+1),

N+1∑

n=1

ℓn +
Z1

ηN+1

〉

=

〈
b(N+1), ℓN+1 +

(
1

ηN+1
− 1

ηN

)
Z1

〉
+

〈
b(N+1),

N∑

n=1

ℓn +
Z1

ηN

〉

≥
N+1∑

n=1

〈
b(n), ℓn

〉
+

〈
b(1)

η1
+

N+1∑

n=2

(
1

ηn
− 1

ηn−1

)
b(n),Z1

〉
,

where the last inequality comes from applying the hypothesis (19) with x = b(N+1) on the second
inner product. Rearrange the above inequality, our induction is completed. □
Lemma 6 (Hoeffding-Azuma). Let N ∈ N, V1, V2, · · · , VN be a bounded martingale difference
sequence w.r.t. X1, X2, · · · , XN such that for any n ∈ [N ] Vn ∈ [An, An + rn] for some random
variable An, measurable w.r.t. X1, · · · , Xn−1 and a positive constant rn. Then, for any s > 0,

P


 ∑

n∈[N ]

Vn > s


 ≤ exp

(
− 2s2∑

n∈[N ] r
2
n

)
and P


 ∑

n∈[N ]

Vn < −s


 ≤ exp

(
− 2s2∑

n∈[N ] c
2
n

)
.
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D Analysis of P-FWS

In this appendix, we prove our main theorem.
Theorem 4. Let µ ∈ Λ and δ ∈ (0, 1). If P-FWS is parametrized using

(ϵt, ηt, nt, ρt, θt) =

(
t−

1
9 ,

1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2|X0|
,

1

t
1
4 e

√
t

)
, (10)

then (i) the algorithm finishes in finite time almost surely and Pµ [̂ı ̸= i⋆(µ)] ≤ δ; (ii) its sam-
ple complexity satisfies Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1 and for any ϵ, ϵ̃ ∈ (0, 1) with

ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 },

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
1

δ
· 4c2

3
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+1 and Ψ(ϵ, ϵ̃) (refer to (34) for a detailed expression) is polynomial in
ϵ−1, ϵ̃−1, K, ∥µ∥∞ and△min(µ)

−1; (iii) the expected number of LM Oracle calls is upper bounded
by a polynomial in ln δ−1, K, ∥µ∥∞ and△min(µ)

−1.

D.1 δ-correctness (Theorem 4 (i))

Recall that P-FWS stopping rule is:

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,

(
1− 1

4|X0|

)
δ

)
,max

{
1

△min(µ̂(t))
, ∥µ̂(t)∥∞

}
≤
√
t

}
,

(7)
where F̂t is computed by (ϵt, δ/t

2)-MCP(ω̂(t), µ̂(t)). Let ı̂ = i⋆(µ̂(τ)) be the output of P-FWS.
Define the good event G =

⋂∞
t=4|X0|+1{F̂t ≤ (1 + ϵt)Fµ̂(t)(ω̂(t))}. Hence, it follows from the

guarantee of (ϵt, δ/t2)-MCP algorithm that

Pµ[Gc] ≤ δ
∞∑

t=4|X0|+1

t−2 ≤ δ
∫ ∞

4|X0|
x−2dx ≤ δ

4|X0|
.

Besides, under the event G,

(1 + ϵτ )τFµ̂(τ)(ω̂(τ)) ≥ τF̂τ ≥ (1 + ϵτ )β

(
τ,

(
1− 1

4|X0|

)
δ

)

holds, implying that τFµ̂(τ)(ω̂(τ)) ≥ β
(
τ,
(
1− 1

4|X0|

)
δ
)

. So, by (8)-(9), ı̂ = i⋆(µ̂(t)) satisfies:

Pµ [̂ı ̸= i⋆(µ) ,G] ≤
(
1− 1

4|X0|

)
δ,

and thus Pµ [̂ı ̸= i⋆(µ)] ≤ Pµ [̂ı ̸= i⋆(µ) ,G] + Pµ[Gc] ≤ δ.

D.2 Almost-sure upper bound (Theorem 4 (ii))

In this section, we show Theorem 4 (ii) an almost-sure upper bound on the sample complexity for
P-FWS. Our proof is based on the continuity of Fµ in µ (as in [GK16, WTP21]) and also on the
following observations:

(a) {µ̂(t) t→∞−→ µ} and {∇F̃µ,ηt,nt
(ω)

t→∞−→ ∇F̄µ,ηt
(ω), ∀ω ∈ Σ+} happen almost surely,

(b) F̂t ≥ Fµ̂(t)(ω̂(t)).

For (a), by the law of large numbers, µ̂(t) t→∞−→ µ as Nk(t)
t→∞−→ ∞ for all k ∈ [K] yielded by

forced exploration rounds involved in P-FWS (Lemma 14 in Appendix F), ∇F̃µ,ηt,nt
(ω)

t→∞−→
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∇F̄µ,ηt
(ω), ∀ω ∈ Σ+ is a direct consequence that nt

t→∞−→ ∞. (b) is immediately derived from
the definition of F̂t as F̂t = fx̂(ω̂(t), µ̂(t)) for some action x̂ ̸= i⋆(µ̂(t)) and Fµ̂(t)(ω̂(t)) =
minx∈X\i⋆(µ̂(t)) fx(ω̂(t), µ̂(t)).

Introduce the event

E =

{
Fµ(ω̂(t))

t→∞−→ max
ω∈Σ

Fµ(ω) and µ̂(t)
t→∞−→ µ

}
.

Because of (a), Theorem 5 in Appendix E ensures that Pµ[E ] = 1. Also, by the uniform continuity of
Fµ(ω) in µ for an arbitrary ω ∈ Σ+ (Lemma 7 in D.3.3),

max
ω∈Σ+

∣∣Fµ̂(t)(ω)− Fµ(ω)
∣∣ t→∞−→ 0

almost surely, and hence by the triangle inequality, this implies that

Pµ

[
Fµ̂(t)(ω̂(t))

t→∞−→ max
ω∈Σ

Fµ(ω)

]
= 1.

For any ϵ ∈ (0, 1), under E , there exists a positive integer Tϵ > max {c1, 4|X0|} such that for any
t ≥ Tϵ, we have

Fµ̂(t)(ω̂(t)) ≥ (1− ϵ)max
ω∈Σ

Fµ(ω), max

{
1

△min(µ̂(t))
, ∥µ̂(t)∥∞

}
≤
√
t, and ϵt ≤ ϵ, (20)

where the second inequality is due to (a) and the third is because ϵt → 0. So, the stopping time (7)
can be upper bounded by

τ ≤ Tϵ + inf

{
t > Tϵ : tF̂t > (1 + ϵ)β

(
t,
(4|X0| − 1)δ

4|X0|

)}

≤ Tϵ + inf

{
t > Tϵ : tFµ̂(t)(ω̂(t)) > (1 + ϵ)β

(
t,
(4|X0| − 1)δ

4|X0|

)}

≤ Tϵ + inf

{
t > Tϵ : t(1− ϵ)max

ω∈Σ
Fµ(ω) > (1 + ϵ)β

(
t,
(4|X0| − 1)δ

4|X0|

)}

≤ Tϵ + inf

{
t > Tϵ :

(1− ϵ)t
(1 + ϵ)T ⋆(µ)

> ln

(
c2t

δ
· 4|X0|
4|X0| − 1

)}

≤ 2Tϵ +

(
1 + ϵ

1− ϵ

)
T ⋆(µ)H

(
1

δ
· 8c2

7

(
1 + ϵ

1− ϵ

)
T ⋆(µ)

)
. (21)

where the first inequality uses the last two inequalities of (20), the second inequality uses (b), the third
inequality is based on the first inequality of (20), the fourth uses T ⋆(µ)−1 = maxω∈Σ Fµ(ω) and
(9), and the last inequality results from (4|X0|)/(4|X0| − 1) ≤ 8/7 (as |X0| ≥ 2), and an application
of Lemma 9 with

α = 1, b1 =
1− ϵ
1 + ϵ

· 1

T ⋆(µ)
and b2 =

8c2
7
· 1
δ
.

Finally, as ϵ ∈ (0, 1) can be arbitrarily small, (21) implies that

Pµ

[
lim sup

δ→0

τ

ln δ−1
≤ T ⋆(µ)

]
= 1.

D.3 Non-asymptotic sample complexity (Theorem 4 (ii))

We establish the following non-asymptotic upper bound on Eµ[τ ]: for any ϵ̃, ϵ ∈ (0, 1) small enough,

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
H

(
1

δ
· 8c2

7
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+ 1 and Ψ(ϵ, ϵ̃) is defined in (34).
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Note that this directly implies the asymptotic optimality. Indeed, when δ → 0, we get:

lim sup
δ→0

Eµ[τ ]

ln δ−1
≤ (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
.

As ϵ, ϵ̃ can be set arbitrarily small and kl(δ, 1 − δ) ≈ ln δ−1 as δ → 0, it matches the sample
complexity lower bound (1) (Theorem 7 in Appendix K) asymptotically.

Throughout this section, we assume µ ∈ Λ is given and take any ϵ ∈ (0, 1) satisfying the following:

ϵ < min

{
1,

2D2△2
min

K
,

1

6T ⋆(µ)

}
≤ min

{
1,

2D2△2
min

K
,
D2 ∥µ∥2∞

3

}
, (22)

where the second inequality is because T ⋆(µ)−1 ≤ ℓ = 2D2 ∥µ∥2∞ by Lemma 22 in Appendix I.

The assumption of ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 } is used to define the good events introduced in

D.3.1 as well as to derive several necessary technical lemmas summarized in D.3.3.

D.3.1 Good events

Since in early rounds, the estimation of µ̂(t) is noisy, we introduce two threshold functions, h and h,
on the round index T :{

h(T ) = min{t ∈ N : t ≥ T a,
√
t/|X0| ∈ N}

h(T ) = min{t ∈ N : t ≥ T bh(T ),
√
t/|X0| ∈ N} , (23)

where a, b ∈ (0, 1) and a+ b < 1 will be explained later in (27). Now, we define our good events:

E1,ϵ(T ) =
T⋂

t=h(T )

E(t)1,ϵ and E2,ϵ(T ) =
T⋂

t=h(T )

E(t)2,ϵ , (24)

where E(t)1,ϵ =
{〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x(t)
〉
≥ maxx∈X

〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
− ϵ
}

and E(t)2,ϵ =
{
∥µ̂(t− 1)− µ∥∞ < ϵ

24D3∥µ∥∞

}
.

E(t)1,ϵ is the event when the solution of FW update is bounded by at most ϵ, and E(t)2,ϵ is the event when

the empirical estimate of µ is sufficiently accurate. Under E(t)2,ϵ , the uniform continuity shown in
Lemma 7 in D.3.3 ensures that:

|Fµ̂(t−1)(ω)− Fµ(ω)| < ϵ, ∀ω ∈ Σ+,

|
〈
∇F̄µ̂(t−1),η(ω)−∇F̄µ,η(ω),x− ω

〉
| < ϵ, ∀(ω,x) ∈ Σ+ ×X ,∀η ∈ (0, min

k∈[K]
ωk).

The second inequality enables the duality gap of FW algorithm to be controlled, leading to the
convergence of P-FWS. Let

M = max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min(µ)

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}

+max





(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b



 , (25)

then overall, we have (Theorem 5 in D.3.3): for any t ≥ h(M),

max
ω∈Σ

Fµ(ω)− Fµ(ω̂(t)) ≤ 5ϵ, △min(µ̂(t)) ≥
△min(µ)

2
, and ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

. (26)

Finally, the values of a, b are set to the following:

a =
7

9
and b =

1

9
. (27)

This choices will balance the leading order between ϵ−1 and ϵ̃−1 in the δ-independent terms (34) of
the non-asymptotic upper bound (which will be shown later).
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D.3.2 Proof of non-asymptotic sample complexity

Let δ ∈ (0, 1). We claim that:

Eµ[τ ] ≤
∞∑

T=1

Pµ[τ ≥ T ] ≤ T0(δ) +
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] , (28)

where T0(δ) = inf
{
T ≥M : h(T ) + (1+ϵT )

T⋆(µ)−1−6ϵβ
(
T, (4|X0|−1)δ

4|X0|

)
≤ T

}
. The proof is completed

by bounding each term in the right-hand side of (28).

Proof of (28): Suppose T ≥M and E1,ϵ(T ) ∩ E2,ϵ(T ) holds. Observe that

min{τ, T} ≤ h(T ) +
T∑

t=⌈h(T )⌉

1{τ > t} .

To derive an upper bound of
∑T

t=⌈h(T )⌉ 1{τ > t}, recall the stopping rule (7) that

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,
(4|X0| − 1)δ

4|X0|

)
,max

{
1

△min(µ̂(t))
, ∥µ̂(t)∥∞

}
≤
√
t

}

≤ inf

{
t ≥ h(M) : tF̂t > (1 + ϵt)β

(
t,
(4|X0| − 1)δ

4|X0|

)}

≤ inf

{
t ≥ h(M) : t(T ⋆(µ)−1 − 6ϵ) > (1 + ϵt)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
,

where the first inequality uses (26), and the second follows from Lemma 7 and Theorem 5 in D.3.3:
|Fµ̂(t−1)(ω̂(t− 1))− Fµ(ω̂(t− 1))| < ϵ and T ⋆(µ)−1 − Fµ(ω̂(t)) ≤ 5ϵ, (29)

and the fact that F̂t ≥ Fµ̂(t)(ω̂(t)). Hence,
∑T

t=h(T ) 1{τ > t} is upper bounded by
T∑

t=h(T )

1

{
t(T ⋆(µ)−1 − 6ϵ) ≤ (1 + ϵt)β

(
t,
(4|X0| − 1)δ

4|X0|

)}
≤ (1 + ϵT )

T ⋆(µ)−1 − 6ϵ
β

(
T,

(4|X0| − 1)δ

4|X0|

)
.

By defining T0(δ) as done in (28), we get (28), i.e.,

Eµ[τ ] ≤
∞∑

T=1

Pµ[τ ≥ T ] ≤ T0(δ) +
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c]

because E1,ϵ(T ) ∩ E2,ϵ(T ) ⊆ {τ ≤ T} for any T ≥ T0(δ).

Now, we proceed with the proof by upper-bounding each term in the right-hand side of (28).

Bounding T0(δ): Introduce ϵ̃ ∈ (0, 1) that can be chosen arbitrarily small. Notice that

T − h(T ) = T − T a+b ≥ T

1 + ϵ̃
when T ≥

(
1 +

1

ϵ̃

) 1
1−(a+b)

, (30)

ϵT = T− 1
9 ≤ ϵ̃ when T ≥

(
1

ϵ̃

)9

, (31)

where the first inequality results from a simple rearrangement, and the second substitutes ϵt = t−1/9.
Then, it follows from (9) that:

T0(δ) ≤ inf

{
T ≥ max

{
M, (1 + ϵ̃−1)

1
1−(a+b) , ϵ̃−9

}
:
(1 + ϵ̃)β

(
T, 3δ4

)

T ⋆(µ)−1 − 6ϵ
≤ T

1 + ϵ̃

}

≤ inf

{
T ≥ max

{
M, (1 + ϵ̃−1)

1
1−(a+b) , ϵ̃−9, c1

}
: ln

(
4c2T

3δ

)
≤ T ⋆(µ)−1 − 6ϵ

(1 + ϵ̃)2
· T
}

≤ max
{
M, (1 + ϵ̃−1)

1
1−(a+b) , ϵ̃−9, c1

}
+

(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
4c2
3δ
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
,

(32)
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where the first inequality uses (30)-(31) and 4|X0|−1
4|X0| ≥

3
4 (as |X0| ≥ 2 is shown in Lemma 23 in

Appendix J), the second inequality is due to (9), and the last results from an application of Lemma 9
in Appendix D.3.3 with

α = 1, b1 =
T ⋆(µ)−1 − 6ϵ

(1 + ϵ̃)2
, and b2 =

4c2
3δ
.

Bounding
∑∞

T=M+1 Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c]: By Lemma 8 in Appendix D.3.3, it is upper bounded
by

2K


 3

min{1, ϵ2

8ℓ2K3D2 }2+ 2
a

+ 2

(
2304D6 ∥µ∥2∞

√
|X0|

ϵ2

)2+ 2
a


Γ

(
2 +

2

a

)
. (33)

Putting things together: Finally, substituting (a, b) = (79 ,
1
9 ) into (25)-(32)-(33) yields that:

• T0(δ) ≤M +
(
1 + 1

ϵ̃

)9
+
(
1
ϵ̃

)9
+ c1 +

(1+ϵ̃)2

T⋆(µ)−1−6ϵ ×H
(

4c2
3δ ·

(1+ϵ̃)2

T⋆(µ)−1−6ϵ

)

• M ≤ max{(4|X0|)
9
7 , ( 4K2

ϵ2D2|X0| )
9
7 , ( 4

△2
min

)
9
7 , (

9∥µ∥2
∞

4 )
9
7 }+max{( ℓϵ )9, ( 5ℓK2

ϵ
√

|X0|
)2.25}

•
∑∞

T=M Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] < 78K
ϵ10

(
215K15D10ℓ10 + 24139D30 ∥µ∥10∞ |X0|2.5

)

where simplifications are obtained remarking that Γ(2 + 2
a ) ≤ 13 and 2 + 2

a < 5. Therefore,
substituting ℓ = 2D2 ∥µ∥2∞ (defined in Appendix I) and 78 < 27, 39 ≤ 215, and 49/7 < 6 lead to:

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
4c2
3δ
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where

Ψ(ϵ, ϵ̃) = 6max

{
|X0|,

K2

ϵ2D2|X0|
,

1

△2
min

, ∥µ∥2∞
} 9

7

+max

{
29D18 ∥µ∥18∞

ϵ9
,
102.25D4.5 ∥µ∥4.5∞ K2

ϵ2.25|X0|1.125

}

+

(
1 +

1

ϵ̃

)9

+

(
1

ϵ̃

)9

+ c1 +
232KD30 ∥µ∥10∞

(
K15 ∥µ∥10∞ + 231|X0|2.5

)

ϵ10
. (34)

D.3.3 Technical lemmas

The most important step in Theorem 4 is to bound the term
∑∞

T=M+1 Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] in
(28) explicitly in terms of K, ∥µ∥∞ and ϵ. For this purpose, inspired by Assumption 3 in [WTP21],
we developed Proposition 4 (see Appendix G.2 for the proof) and combine it with the mean-valued
theorem to derive our main continuity results in Lemma 7 (see Appendix G for the proof). Throughout
this section, we fix µ ∈ Λ and denote△min(µ) by△min.

Lemma 7. Let ϵ ∈ (0,
2D2△2

min

K ). Then, any π ∈ RK with ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

satisfies the
following:

|Fµ(ω)− Fπ(ω)| < ϵ, ∀ω ∈ Σ+ (35)

|
〈
∇F̄π,η(ω)−∇F̄µ,η(ω),x− ω

〉
| < ϵ, ∀(ω,x) ∈ Σ+ ×X ,∀η ∈ (0, min

k∈[K]
ωk). (36)

Our main concentration result with error specified explicitly in terms of ϵ is (see Appendix F for the
proof):

Lemma 8. Let ϵ ∈ (0,
2D2△2

min

K ) and M be defined as in (25). Then,
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] < 2K

(
3

A1(ϵ)2+
2
a

+
2

A2(ϵ)2+
2
a

)
Γ

(
2 +

2

a

)
,

where A1(ϵ) = min{1, ϵ2

8ℓ2K3D2 }, A2(ϵ) =
ϵ2

2304D6∥µ∥2
∞
√

|X0|
, and Γ denotes the gamma function

Γ(z) =
∫∞
0
tz−1e−tdt for any z > 0.
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We remark that Lemma 8 sharpens a similar result, Lemma 2 in [WTP21], by a factor of eK after
performing a more careful analysis.

Under good events E1,ϵ(T ) ∩ E2,ϵ(T ), we show Theorem 5, the convergence of P-FWS when µ̂(t) is
replaced with µ. As shown in Appendix D.3.2, the extra error due to this replacement is controlled,
thanks to Lemma 7.

Theorem 5. Let ϵ ∈ (0,min{1, 2D
2△2

min

K }) and T be an integer at least larger than

max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
+max





(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b



 .

Under E1,ϵ(T ) ∩ E2,ϵ(T ), Algorithm 2 with (10) satisfies that: for any t = h(T ), h(T ) + 1 · · · , T ,

(i) max
ω∈Σ

Fµ(ω)− Fµ(ω̂(t)) ≤ 5ϵ, (ii)△min(µ̂(t)) ≥
△min

2
, and (iii) ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

.

The proof of Theorem 5 is given in Appendix E.

Finally, the last ingredient is Lemma 9.
Lemma 9 (Lemma 18 in [GK16]). Let α ∈ [1, e2 ] and b1, b2 > 0. Then,

x =
1

b1

(
ln

(
b2e

bα1

)
+ lnln

(
b2
bα1

))

satisfies b1x ≥ ln(b2x
α).

D.4 Computational complexity (Theorem 4 (iii))

In this section, we analyze the computational complexity of P-FWS running with (10) in terms of the
number of calls to LM Oracle. We will show that the expected number of LM Oracle calls is upper
bounded by a polynomial in ln δ−1, K, ∥µ∥∞ and△min(µ)

−1.

Proof The construction of X0 and computation of ı̂ merely takes O(KD) calls to LM Oracle.
The overall complexity is dominated by the LM Oracle calls performed from 4|X0|+ 1 to round τ ,
analyzed as follows.

Per-round complexity: Fix t ∈ {4|X0|+1, · · · , τ}. Recall from P-FWS that the FW update in round
t and the stopping rule in round t− 1 are computed only if:

max{△min(µ̂(t− 1))−1, ∥µ̂(t− 1)∥∞} ≤
√
t− 1. (37)

Otherwise, forced-exploration procedure is invoked. Verifying (37) takes at most D + 1 calls.6 The
computation of F̂t−1 and i⋆(∇F̃µ̂(t−1),ηt,nt

(ω̂(t−1))) by Theorem 3 in Appendix C.2 takes at most

O
(
D +

∥µ̂(t− 1)∥4∞
∥∥ω̂(t− 1)−1

∥∥2
∞K3D5 lnK

Fµ̂(t−1)(ω̂(t− 1))2

(
ln(t2δ−1)

ϵ2t
+
nt ln θ

−1
t

ρ2t

))
(38)

calls to LM Oracle. To evaluate (38), we need a lower bound on Fµ̂(t−1)(ω̂(t− 1)). By Proposition 1
(c) in Appendix C.1, one evaluates Fµ̂(t−1)(ω̂(t− 1)) in closed-form:

Fµ̂(t−1)(ω̂(t− 1)) = min
x̸=i⋆(µ̂(t−1))

△x(µ̂(t− 1))2

2 ⟨x⊕ i⋆(µ̂(t− 1)), ω̂(t− 1)−1⟩ ≥
mink∈[K] ω̂k(t− 1)

4D(t− 1)
,

where the inequality results from (37) that △min(µ̂(t − 1)) ≥ 1√
t−1

, ∥x⊕ x′∥1 ≤ 2D for any
x,x′ ∈ X , and ⟨y, z⟩ ≤ ∥y∥1 ∥z∥∞ for any y, z ∈ RK . Further, combining with Lemma 14 (which
states mink∈[K] ω̂k(t− 1) ≥ 1

2
√

(t−1)|X0|
) in Appendix F yields

Fµ̂(t−1)(ω̂(t− 1)) ≥ 1

8D
√
|X0|(t− 1)1.5

. (39)

6For any π ∈ Λ,△min(π) requires to compute i⋆(π) and and solve maxx̸=i⋆(π) ⟨π,x⟩, where the latter
requires at most D calls to the LM Oracle by Lemma 2 in § 2.2.
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From (39), ∥µ̂(t− 1)∥∞ ≤
√
t− 1, Lemma 14, and substituting the parameters (10) into (38), we

know that the number of LM Oracle calls performed at any round t ≥ 4|X0|+ 1 is at most

O
(
t6|X0|2K3D7 lnK

(
ln(t2δ−1)

ϵ2t
+
nt ln θ

−1
t

ρ2t

))

= O
(
t6|X0|2K3D7 lnK

(
t
2
9 ln

(
t

δ

)
+ t2.75D4|X0|2

))

= O
(
t8.75 ln

(
t

δ

)
|X0|4D11K3 lnK

)
. (40)

Overall complexity: Invoking Theorem 4 in D.3 with ϵ̃ = 0.1 and ϵ = 1
12T⋆(µ) results in

Eµ[τ ] = O
(
T ⋆(µ) ln

(
T ⋆(µ)

δ

)
+

1

△
18
7

min

+K16D30 ∥µ∥20∞ T ⋆(µ)10

)

which after using T ⋆(µ) ≤ 4KD/△2
min (Lemma 1 in §2.1) becomes

Eµ[τ ] = O
(
KD

△2
min

ln

(
KD

δ△2
min

)
+
K26D40 ∥µ∥20∞
△20

min

)
. (41)

Hence, by a summation of (40) over t = 4|X0| + 1 to Eµ[τ ], the expected total number of the LM
Oracle calls is upper bounded by

O
(
Eµ[τ ]

9.75
ln

(
Eµ[τ ]

δ

)
|X0|4D11K3 lnK

)
, (42)

where the inequality uses integral by parts
∫
t8.75 ln tdt = O(t9.75 ln t). Remind that

max{D, |X0|} ≤ K. Thus, we conclude that (42) is bounded by a polynomial function in ln δ−1,
∥µ∥∞,△−1

min, and K (due to (41), Eµ[τ ] is bounded by a polynomial function in the same variables).
□
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E Convergence of P-FWS under the good events

Throughout this section, we assume that µ is fixed and drop µ from the notation, e.g., F = Fµ,
F̄η = F̄µ,η, F̃η,t = F̃µ,η,t, and △min = △min(µ). Also, we will use ω⋆ ∈ argmaxω∈Σ F (ω) to
denote any optimal allocation and let i⋆ = i⋆(µ). Recall that h(T ) ≥ T a and h(T ) ≥ T a+b is
defined in (23) in Appendix D.3.1 for some a, b ∈ (0, 1).

Theorem 5. Let ϵ ∈ (0,min{1, 2D
2△2

min

K }) and T be an integer at least larger than

max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
+max





(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b



 .

Under E1,ϵ(T ) ∩ E2,ϵ(T ), Algorithm 2 with (10) satisfies that: for any t = h(T ), h(T ) + 1, · · · , T ,

(i) F (ω⋆)− F (ω̂(t)) ≤ 5ϵ, (ii)△min(µ̂(t)) ≥
△min

2
, and (iii) ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

.

Proof Fix arbitrary ϵ and T that satisfy the conditions in the statement, and suppose E1,ϵ(T )∩E2,ϵ(T )
holds. (ii)(iii) directly follows from Lemma 10 (where one can verified that its assumption of
Lemma 10 on T is satisfied). With (ii)(iii), the analysis of FW convergence will be greatly simplified
as (ii)(iii) ensure that

max

{
1

△min(µ̂(t− 1))
, ∥µ̂(t− 1)∥

}
≤
√
t− 1.

This means that the forced-exploration procedure will only be invoked by the condition of
√
t/|X0|

when t ≥ h(T ) = T a.

Proof of (i) F (ω⋆)− F (ω̂(t)) ≤ 5ϵ: Fix t ≥ h(T ). As mentioned above, for such t, the forced-
exploration procedure will be invoked only when

√
t/|X0| ∈ N. To specify the rounds performing

FW udpates, introduce s(t) = ⌊
√
t/|X0|⌋ − 1 and define

p(t) = (s(t)2 + 1)|X0| and q(t) = (s(t) + 1)2|X0| − 1.

Notice that p(t) and q(t) are respectively the starting (including) and the ending (including) round of
a successive FW update rounds with no forced exploration in between. Let ϕt = F (ω⋆)− F̄ηt(ω̂(t))
be the error. By a careful analysis, we derive a recursive relationship satisfied by ϕt (Lemma 11):

{
tϕt ≤ (t− |X0|)ϕt−|X0| + 2ℓ

√
D|X0|2 if t = p(t)− 1,

tϕt ≤ (t− 1)ϕt−1 + 3ϵ+ ℓ
(
ηt−1 +

K2

2tηt

)
if t ∈ [p(t), q(t)].

(43)

The first case (in round t = p(t)− 1) is exactly the ending round of a forced-exploration procedure
(from t − |X0|, · · · , t), and the second case (in round t ∈ [p(t), q(t)]) is a FW-update round. By
repeatedly applying (43), we have

h(T )ϕh(T ) ≤ h(T )ϕh(T ) + 2ℓ
√
D|X0|2

(
s(h(T ))− s(h(T ))

)
+ 3

h(T )∑

t=h(T )

(
ℓK2

√
t|X0|

+ ϵ)

≤ h(T )ℓ+ ℓ

(
2
√
D|X0|1.5 +

3K2

√
|X0|

)(√
h(T )−

√
h(T )

)
+ 3ϵ(h(T )− h(T )),

where the second inequality follows from ϕh(T ) ≤ maxω∈Σ Fµ(ω) ≤ ℓ (Lemma 22 in Appendix I),

s(h(T ))− s(h(T )) ≤
√

h(T )−
√

h(T )√X0
and

∑h(T )
t=h(T )

1√
t
≤
√
h(T )−

√
h(T ). Substituting h(T ) and

h(T ) from (23) and simplifying the terms, we get:

F (ω⋆)− F (ω̂(t)) ≤ ϕh(T ) ≤ ℓT−b +
5ℓK2

√
|X0|

T− a+b
2 + 3ϵ(1− T−b) ≤ 5ϵ
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when

T ≥ max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
+max





(
ℓ

ϵ

) 1
b

,

(
5ℓK2

ϵ
√
|X0|

) 2
a+b



 ,

where the first inequality is due to F (ω̂(t)) ≥ F̄ηt
(ω̂(t)) by Proposition 2 (i) in §4.1. □

Lemma 10. Let ϵ ∈ (0,min{1, 2D2△2
min/K}) and T be a positive integer s.t.

T ≥ max

{
(4|X0|)

1
a ,

(
4K2

ϵ2D2|X0|

) 1
a

,

(
2

△min

) 2
a

,

(
3 ∥µ∥∞

2

) 2
a

}
. (44)

Suppose E1,ϵ(T ) ∩ E2,ϵ(T ) holds. Then, for any t ≥ h(T ),

△min(µ̂(t)) ≥
△min

2
and ∥µ̂(t)∥∞ ≤

3 ∥µ∥∞
2

. (45)

Proof Fix any T satisfying (45) and suppose E1,ϵ(T ) ∩ E2,ϵ(T ) holds. Consider any t ≥ T a and
hence t ≥ 4|X0|. To show the first inequality of (45), from E2,ϵ(T ) and ϵ < 2D2△2

min/K, we have

△min(µ̂(t− 1)) ≥ △min −
2Dϵ

24D3 ∥µ∥∞
> △min −

△2
min

6K ∥µ∥∞
>
△min

2
,

where the last inequality is because△min ≤ 2D ∥µ∥∞ and D ≤ K. To show the second inequality
of (45), observe that

∥µ̂(t)∥∞ ≤ ∥µ∥∞ +
ϵ

24D3 ∥µ∥∞
< ∥µ∥∞ +

△2
min

12KD ∥µ∥∞
<

3 ∥µ∥∞
2

,

where the first inequality is because of E2,ϵ(T ), the second is due to ϵ < 2D2△2
min/K, and the last

uses△min ≤ 2D ∥µ∥∞. □

Lemma 11. Let ϵ > 0 and t ∈ N be such that (45) holds. Then, under the event E(t)1,ϵ ∩ E
(t)
2,ϵ ,

{
tϕt ≤ (t− |X0|)ϕt−|X0| + 2ℓ

√
D|X0|2 if t = p(t)− 1

tϕt ≤ (t− 1)ϕt−1 + 3ϵ+ ℓ
(
ηt−1 +

K2

2tηt

)
if t ∈ [p(t), q(t)]

, (43)

where p(t) = (s(t)2 + 1)|X0|, q(t) = (s(t) + 1)2|X0| − 1, and s(t) = ⌊
√
t/|X0|⌋ − 1.

Proof The first case basically follows from the Lipschitzness of F (Appendix I), whereas the second
relies on results on stochastic smoothing (Appendix H).

Case t = p(t)− 1: In this case, round t is exactly the end (including) round of a forced-exploration
procedure. By ℓ-Lipschitzness of F (Lemma 21 in Appendix I),

F (ω̂(t))− F (ω̂(t− |X0|)) ≥ −ℓ ∥ω̂(t)− ω̂(t− |X0|)∥2 ≥ −
ℓ
√
D|X0|2
t

,

where the second inequality stems from ω̂(t) = t−|X0|
t ω̂(t−|X0|)+ |X0|

t

∑
x∈X0

x after performing

the forced exploration. It then follows that ∥ω̂(t)− ω̂(t− |X0|)∥2 ≤
√
D|X0|2

t . By maxω∈Σ F (ω) ≤
ℓ (Lemma 22 in Appendix I) and a rearrangement of the above yields

tϕt ≤ tϕt−|X0| + ℓ
√
D|X0|2 ≤ (t− |X0|)ϕt−|X0| + ℓ|X0|(

√
D|X0|+ 1).

The proof is completed after simplifying the terms.

Case: t ∈ [p(t), q(t)]: In this case, round t performs a FW update. For brevity, let z = ω̂(t) and
y = ω̂(t− 1). By ℓK

ηt
-smoothness of F̄ηt

(Proposition 2 (iii) in §4.1) and z − y = 1
t (x(t)− y),

F̄ηt
(z) ≥ (∗)− ℓK

2ηt
∥z − y∥22 ≥ (∗)− ℓK

2t2ηt
∥x(t)− y∥22 ≥ (∗)− ℓK2

2t2ηt
,
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where (∗) = F̄ηt(y) +
〈
∇F̄ηt(y), z − y

〉
= F̄ηt(y) +

1
t

〈
∇F̄ηt(y),x(t)− y

〉
. It follows from

E(t)1,ϵ ∩ E
(t)
2,ϵ and the continuity argument (Lemma 7 in Appendix G.1) that

〈
∇F̄ηt

(y),x(t)− y
〉
≥
〈
∇F̄µ̂(t−1),ηt

(y),x(t)− y
〉
− ϵ

≥ max
x∈X

〈
∇F̄µ̂(t−1),ηt

(y),x− y
〉
− 2ϵ ≥ max

x∈X

〈
∇F̄ηt

(y),x− y
〉
− 3ϵ.

Then, the duality gap [Jag13] and the ℓ-Lipschitzness of F (Lemma 21 in Appendix I) yield

max
x∈X

〈
∇F̄ηt

(y),x− y
〉
≥ max

ω∈Σ
F̄ηt

(ω)− F̄ηt
(y)

≥ (F (ω⋆)− ηtℓ)− (F̄ηt−1(y) + ℓ(ηt−1 − ηt)) = ϕt−1 − ℓηt−1.

Therefore, F̄ηt
(z) ≥ F̄ηt

(y) + ϕt−1−ℓηt−1−3ϵ
t − ℓK2

2t2ηt
and subtracting F (ω⋆) on both sides,

ϕt = F (ω⋆)− F̄ηt(z)

≤ (F (ω⋆)− F̄ηt
(y)) +

−ϕt−1 + ℓηt−1 + 3ϵ

t
+

ℓK2

2t2ηt

=
t− 1

t
ϕt−1 +

1

t

(
3ϵ+ ℓ

(
ηt−1 +

K2

2tηt

))
,

which completes the proof. □
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F Upper bound of
∑∞

T=M+1 Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] under P-FWS

Recall from (24) that E1,ϵ(T ) = ∩Tt=h(T )E
(t)
1,ϵ and E2,ϵ(T ) = ∩Tt=h(T )E

(t)
2,ϵ , where

E(t)1,ϵ =

{〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x(t)
〉
≥ max

x∈X

〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
− ϵ
}
,

E(t)2,ϵ =

{
∥µ̂(t− 1)− µ∥∞ <

ϵ

24D3 ∥µ∥∞

}
,

T ≥M and M is defined in (25). Also, recall x(t) ∈ argmaxx∈X
〈
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1)),x
〉

,

where ∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) is computed by (ρt, θt)-MCP algorithm with

(ηt, nt, ρt, θt) =

(
1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2X0
,

1

t
1
4 e

√
t

)
. (10)

Our main result Lemma 8 is built by bounding Pµ[E1,ϵ(T )] and Pµ[E2,ϵ(T )] separately with
Lemma 12 in F.1 and Lemma 14 in F.2.
Lemma 8. Let ϵ ∈ (0, 2D2△2

min/K) and M be defined as in (25) Then,
∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] < 2K

(
3

A1(ϵ)2+
2
a

+
2

A2(ϵ)2+
2
a

)
Γ

(
2 +

2

a

)
,

where A1(ϵ) = min{1, ϵ2

8ℓ2K3D2 }, A2(ϵ) =
ϵ2

2304D6∥µ∥2
∞
√

|X0|
, and Γ denotes the gamma function

Γ(z) =
∫∞
0
tz−1e−tdt for any z > 0.

Proof Fix ϵ > 0. For all T ≥M , we have
Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] ≤ Pµ[E1,ϵ(T )c] + Pµ[E2,ϵ(T )c] .

Bounding Pµ[E1,ϵ(T )c]: This is done by using Lemma 12 with v = ω̂(t) and (η, n) = (ηt, nt).
Before applying Lemma 12, we verify that our chosen ρt in (10) satisfies the assumption of Lemma 12:

(mink∈[K] ω̂k(t)− ηt)2
D2

≥ 1

D2

(
1

2
√
t|X0|

− 1

4
√
t|X0|

)2

=
1

16tD2|X0|
= ρt,

where the inequality is because of mink∈[K] ω̂k(t) ≥ 1

2
√

t|X0|
(Lemma 14) and that ηt = 1

4
√

t|X0|
in

(10). Then, applying Lemma 12 with v = ω̂(t), (v, η, n) = ( 1

2
√

t|X0|
, 1

4
√

t|X0|
, ⌈t 1

4 ⌉) yields that:

Pµ[E1,ϵ(T )c] ≤
T∑

t=h(T )

K

(
2 exp

(
− ϵ2

√
t

8ℓ2K3D2

)
+ exp

(
−
√
t
))
≤

T∑

t=h(T )

3K exp
(
−
√
tA1(ϵ)

)
,

where A1(ϵ) = min{1, ϵ2

8ℓ2K3D2 }.
Bounding Pµ[E2,ϵ(T )c]: As Lemma 14 provides a lower bound on the number of pulls,

mink∈[K]Nk(t) ≥ 1
2

√
t

|X0| , for all arms, using this lower bound of Nk(t) as the number of i.i.d.
samples in the application of Chernoff bound leads to:

Pµ

[
|µ̂k(t)− µk| ≥

ϵ

24D3 ∥µ∥∞

]
≤ 2 exp

(
−
√
tA2(ϵ)

)
.

Hence, Pµ[E2,ϵ(T )c] ≤ 2K
∑T

t=h(T ) exp
(
−
√
tA2(ϵ)

)
. Then, we have

∞∑

T=M+1

Pµ[(E1,ϵ(T ) ∩ E2,ϵ(T ))c] ≤
∫ ∞

M+1

∫ ∞

Ta

(
3Ke−

√
tA1(ϵ) + 2Ke−

√
tA2(ϵ)

)
dt dT

≤ 2K

(
3

A1(ϵ)2+
2
a

+
2

A2(ϵ)2+
2
a

)
Γ

(
2 +

2

a

)
,

where the second inequality uses Lemma 15. □
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F.1 Lemmas for bounding Pµ[E1,ϵ(T )c]

The following lemma is a result of two concentration inequalities, one bounds how much the empirical
average deviates from the expectation (Proposition 3), and the other bounds the error incurred by
MCP (Lemma 13).

Lemma 12. Let (π,ω, θ) ∈ Λ × Σ+ × (0, 1), v ∈ (0,mink∈[K] ωk), and η ∈ (0, v). Then,
∀ϵ ∈ (0, 4K(v − η)/D),

P
[〈
∇F̄π,η(ω), x̃⋆ − ω

〉
≥ max

x∈X

〈
∇F̄π,η(ω),x− ω

〉
− ϵ
]
≥ 1−K

(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
,

where∇F̃π,η,n(ω) is computed by
(

(v−η)2

D2 , θ
)

-MCP, and x̃⋆ ∈ argmaxx∈X
〈
∇F̃π,η,n(ω),x

〉
.

Proof Let x⋆ ∈ argmaxx∈X
〈
∇F̄π,η(ω),x

〉
. From x̃⋆ ∈ argmaxx∈X

〈
∇F̃π,η,n(ω),x

〉
,

〈
∇F̄π,η(ω),x⋆ − x̃⋆

〉
≤
〈
∇F̄π,η(ω),x⋆ − x̃⋆

〉
+
〈
∇F̃π,η(ω), x̃⋆ − x⋆

〉

=
〈
∇F̄π,η(ω)−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
.

Fix ϵ > 0. Recall that∇F̃π,η,n(ω) = 1
n

∑n
m=1∇ωfx̂m

(ω + ηZm,π) where each x̂m is computed

by ( (v−η)2

D2 , θ)-MCP(ω+ηZm,π), and each Zm is independently sampled from Uniform(B2). Now,
consider any fixed x = ek for any k ∈ [K]. Invoking Proposition 3 with ϵ = ϵ

4K and x = ek, we
get:

P

[∣∣∣∣∣

〈
∇F̄π,η(ω)− 1

n

n∑

m=1

∇Fπ(ω + ηZm), ek

〉∣∣∣∣∣ ≥
ϵ

4K

]
≤ 2 exp

(
− ϵ2n2

8ℓ2K3D2

)
.

Also, for∇F̃π,η,n(ω) computed by the ((v − η)2/D2, θ)-MCP algorithm, Lemma 13 with x = ek,
and θ = θ and the assumption that ϵ ∈ (0, 4K(v − η)/D) implies that:

P

[∣∣∣∣∣

〈
1

n

n∑

m=1

∇Fπ(ω + ηZm)−∇F̃π,η,n(ω), ek

〉∣∣∣∣∣ ≥
ϵ

4K

]
≤ nθ.

Combining the two inequalities leads to:

P
[∣∣∣
〈
∇F̄π,η(ω)−∇F̃π,η,n(ω), ek

〉∣∣∣ ≤ ϵ

2K

]
≥ 1−

(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
.

Then, an application of a union bound over all {ek}k∈[K] gives

P
[〈
∇F̄π,η(ω)−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
≤ ϵ
]
≥ 1−K

(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
. (46)

Observe
〈
−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
≥ 0 implies

{〈
∇F̄π,η(ω)−∇F̃π,η,n(ω),x⋆ − x̃⋆

〉
≤ ϵ
}
⊆
{〈
∇F̄π,η(ω),x⋆ − x̃⋆

〉
≤ ϵ
}
. (47)

From (46)-(47), we conclude that the r.h.s. of (47) happens with probability at least 1 −
K
(
2 exp

(
− ϵ2n2

8ℓ2K3D2

)
+ nθ

)
. The proof is completed by simply rearranging the r.h.s. of (47).

□

Lemma 13. Let (π,ω,x, θ) ∈ Λ×Σ+×{0, 1}K×(0, 1) with ∥x∥1 ≤ D and v ∈ (0,mink∈[K] ωk).

∀(η, z) ∈ (0, v)×B2, P
[
|⟨∇ωfx⋆

(ω + ηz)−∇ωfx̂(ω + ηz),x⟩| ≤ v − η
D

]
≥ 1− θ,

where x⋆ is some action satisfying fx⋆
(ω + ηz) = Fπ(ω + ηz), and x̂ is the returned action of

((v − η)2/D2, θ)-MCP(ω + ηz,π).
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Proof This basically follows from a direct calculation. Let ϵ > 0 and fix any (π,ω,x) ∈ Λ×Σ+×
{0, 1}K , ∥x∥1 ≤ D, and any (η, z) ∈ (0, v)×B2. Then, for x̂ computed by (ρ, θ)-MCP(ω+ ηz,π)
with ρ = (v − η)2/D2, we have with probability at least 1− θ

ρ ≥ |⟨∇ωfx⋆
(ω + ηz)−∇ωfx̂(ω + ηz),ω + ηz⟩|

≥ min
k∈[K]

(ω + ηz)k ∥∇ωfx⋆(ω + ηz)−∇ωfx̂(ω + ηz)∥∞ .

Hence, remarking that mink∈[K](ω + ηz)k ≥ v − η > 0, we get: with probability at least 1− θ,

|⟨∇ωfx⋆(ω + ηz)−∇ωfx̂(ω + ηz),x⟩| ≤ ρD

v − η =
v − η
D

,

where we used the fact that ∥x∥1 ≤ D and Hölder’s inequality. □

Proposition 3. Let (π,ω,x) ∈ Λ× Σ+ × {0, 1}K , η ∈ (0,mink∈[K] ωk), and ∥x∥1 ≤ D. Then,

∀ϵ > 0, P

[∣∣∣∣∣

〈
∇F̄π,η(ω)− 1

n

n∑

m=1

∇Fπ(ω + ηZm),x

〉∣∣∣∣∣ ≥ ϵ
]
≤ 2 exp

(
− 2ϵ2n2

ℓ2KD2

)
,

where Z1, · · · ,Zn are independently sampled from Uniform(B2).

Proof Fix (π,ω,x) ∈ Λ×Σ+×{0, 1}K where ∥x∥1 ≤ D, and fix η ∈ (0,mink∈[K] ωk). Define

ϕ(z1, · · · , zt) =

〈
∇F̄π,η(ω)− 1

n

n∑

m=1

∇Fπ(ω + ηzm),x

〉
.

Note that EZ1,··· ,Zn [ϕ(Z1, · · · ,Zn)] = 0 by definition. Now we also observe that:

max
z1,··· ,zn,z′∈B2,m∈[n]

|ϕ(z1, · · · , zn)− ϕ(z1, · · · , zm−1, z
′, zm+1, · · · , zn)| ≤

ℓD

n

due to the ℓ-Lipschitzness of Fµ̂ (Lemma 21 in Appendix I) and maxx∈X ∥x∥1 ≤ D. Hence it
follows from McDiarmid’s inequality (Lemma 16 in F.3) that

∀ϵ > 0, P[|ϕ(Z1, · · · ,Zn)| ≥ ϵ] ≤ 2 exp

(
− 2ϵ2

K( ℓDn )2

)
= 2 exp

(
− 2ϵ2n2

ℓ2KD2

)
.

□

F.2 Lemmas for bounding Pµ[E2,ϵ(T )c]

Lemma 14 (forced exploration). Let X0 ⊆ X be any set covering all arms [K] and t ≥ 4|X0|. Any
algorithm with forced-exploration procedure satisfies

ω̂(t) ∈ Σ√
1

t|X0|− 1
t

⊂ Σ 1
2

√
1

t|X0|
, ∀t ≥ 4|X0|.

Proof Fix any k ∈ [K]. By merely counting the rounds before t performing forced exploration,

Nk(t) ≥
∑

s∈[t]:⌊√ s
|X0| ⌋∈N

∑

x∈X0

xk ≥
√

t

|X0|
− 1 ≥ 1

2

√
t

|X0|
,

where the last inequality holds for any t ≥ 4|X0|. □

F.3 Technical lemmas

Lemma 15 ([WTP21]). Let α ∈ (0, 1) and A, β > 0. Then,
∫ ∞

0

(∫ ∞

Tα

e−Atβdt

)
dT =

Γ( 1
αβ + 1

β )

βA
1

αβ+ 1
β

.
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Proof The result of Lemma 5 [WTP21] is stated for α, β ∈ (0, 1) but it actually applies for the
case of β > 0 as well. Here we provide a proof for completeness.
∫ ∞

0

(∫ ∞

Tα

e−Atβdt

)
dT =

∫ ∞

0

αTαe−ATαβ

dT =
1

β

∫ ∞

0

x
1

αβ+ 1
β−1e−Axdx =

Γ( 1
αβ + 1

β )

βA
1

αβ+ 1
β

.

□
The below Lemma 16, also known as bounded different inequality, can be found in many textbooks,
e.g., Theorem 6.2 in [BLM13].
Lemma 16 (McDiarmid’s inequality). Let Z = (Z1, · · · ,Zn) be independent random variables,
and ϕ : Rn 7→ R be a measurable function. Suppose ϕ(z) changes by at most ci > 0 under an
arbitrary change of the i-th coordinate. Then,

∀ϵ > 0, P[ϕ(Z)− E[ϕ(Z)] ≥ ϵ] ≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
.
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G Continuity arguments

In this section, we establish the continuity of Fπ(ω) and ∇F̄π,η(ω) in π for any fixed ω ∈ Σ+,
where ∇F̄π,η(ω) denotes the gradient ∇ωF̄π,η(ω) taken w.r.t. the input ω. As the consequence of
the continuity of Fπ and ∇F̄π,η in π, we can show the point-wise convergence of Fµ̂(t) → Fµ and
∇F̄µ̂(t),η → ∇F̄µ,η given that µ̂(t)→ µ almost surely.

Notation. Throughout this section, we define ∇F̄π,η(ω) = 0K if η ≥ mink∈[K] ωk for any

(π,ω) ∈ Λ×Σ+. Moreover, for any (v,ω) ∈ RK×Σ+, we will use∇πFv(ω) (resp. ∇π(
∂F̄v,η(ω)

∂ωk
))

to denote the gradient of the function π 7→ Fπ(ω) (resp. π 7→ ∂F̄π,η(ω)
∂ωk

) evaluated at the point v.

The main result in this section, Lemma 7, is derived based on Lemma 17 in Appendix G.1 (which
asserts the continuity of the function ψω,x,η(π) =

〈
∇F̄π,η(ω),x− ω

〉
on RK) and Proposition 4

in Appendix G.2 (which upper bounds the length of∇fx(ω,µ)).
Lemma 7. Let µ ∈ Λ and ϵ ∈ (0, 2D

2△min(µ)2

K ). Then, any π ∈ RK with ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

satisfies the following:

|Fµ(ω)− Fπ(ω)| < ϵ, ∀ω ∈ Σ+ (35)

|
〈
∇F̄π,η(ω)−∇F̄µ,η(ω),x− ω

〉
| < ϵ, ∀(ω,x) ∈ Σ+ ×X ,∀η ∈ (0, min

k∈[K]
ωk). (36)

Proof Inspired by Lemma 14 in [WTP21], we prove this lemma using Proposition 4 and applying
the mean-value theorem to ψω,x,η .

Fix (ω,µ) ∈ Σ+ × Λ, and let i⋆ = i⋆(µ) and △x = △x(µ) for any x ∈ X\{i⋆}. Fix ϵ ∈
(0,

2D2△2
min

K ) and π ∈ RK such that ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

. One may check that this π satisfies
the assumption of Proposition 4 as

∥π − µ∥∞ <
ϵ

24D3 ∥µ∥∞
<

2D2△2
min

24KD3 ∥µ∥∞
=

△2
min

12KD ∥µ∥∞
≤ △min

6K
<
△min√
2KD

,

where the second inequality stems from the choice of ϵ and the second last is because △min ≤
2D ∥µ∥∞. In what follows, we will be applying the mean-value theorem to ψω,x,η (whose continuity
is stated in Lemma 17). For convenience, introduce the function r(β) = (1 − β)µ + βπ for any
β ∈ (0, 1).

Proof of (35): For any x ∈ X\{i⋆}, by the mean-value theorem, there exists a β ∈ (0, 1) such that

|fx(ω,π)− fx(ω,µ)| = |⟨∇πfx(ω, r(β)),π − µ⟩|

=

∣∣∣∣∣∣
∑

k∈[K]

ωk

〈
∇π

(
∂fx(ω, r(β))

∂ωk

)
,π − µ

〉∣∣∣∣∣∣

≤
∑

k∈[K]

ωk

∥∥∥∥∇π

(
∂fx(ω, r(β))

∂ωk

)∥∥∥∥
1

∥π − µ∥∞ < ϵ, (48)

where the last inequality uses ω ∈ Σ+, ∥π − µ∥∞ < ϵ
24D3∥µ∥∞

,
∥∥∥∇π

(
∂fx(ω,r(β))

∂ωk

)∥∥∥
1
≤

12D2 ∥µ∥∞ (Proposition 4). Hence, from a substitution of x in (48) with xe ∈ argminx ̸=i⋆ fx(ω,µ)
and the fact that Fπ(ω) ≤ fxe(ω,π), we derive

Fπ(ω)− Fµ(ω) ≤ fxe(ω,π)− fxe(ω,µ) < ϵ.

The other inequality of Fµ(ω)− Fπ(ω) < ϵ can be derived similarly. This proves (35).

Proof of (36): Recall that ψω,x,η(π) =
〈
∇F̄π,η(ω),x− ω

〉
is continuous on RK (Lemma 17). By

the mean-value theorem, there exists β ∈ (0, 1) such that

|ψω,x,η(π)− ψω,x,η(µ)| = |⟨∇πψω,x,η(r(β)),π − µ⟩|
≤ ∥∇πψω,x,η(r(β))∥1 ∥π − µ∥∞ . (49)
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To bound ∥∇πψω,x,η(r(β))∥1, we write

∇πψω,x,η(r(β)) =
∑

k∈[K]

∇π

(
∂F̄r(β),η(ω)

∂ωk

)
(xk − ωk).

Then it follows from the fundamental theorem of calculus that: the gradient ∇π and the expectation
operators are exchangeable, i.e.,

∀k ∈ [K], ∇π

(
∂F̄r(β),η(ω)

∂ωk

)
= EZ∼Uniform(B2)

[
∇π

(
∂Fr(β)(ω + ηZ)

∂ωk

)]
.

As shown in Appendix H, ∂Fr(β)(ω+ηZ)

∂ωk
exists almost surely. When such gradient exists, Proposi-

tion 4 bounds its 1-norm length by∥∥∥∥∇π

(
∂Fr(β)(ω + ηZ)

∂ωk

)∥∥∥∥
1

≤ 12D2 ∥µ∥∞ ,

so it follows that
∥∥∥∇π

(
∂F̄r(β),η(ω)

∂ωk

)∥∥∥
1
≤ 12D2 ∥µ∥∞ as well. Hence, substituting the above back

to∇πψω,x,η(r(β)) yields:

∥∇πψω,x,η(r(β))∥1 ≤ max
k∈[K]

∥∥∥∥∇π

(
∂F̄r(β),η(ω)

∂ωk

)∥∥∥∥
1

∥x− ω∥1 ≤ 24D3 ∥µ∥∞ ,

where the first inequality use Hölder’s inequality. Finally, plugging the above into (49) and recalling
that ∥π − µ∥∞ < ϵ

24D3∥µ∥∞
, we have

|ψω,x,η(π)− ψω,x,η(µ)| < ϵ.

This concludes the proof. □

G.1 An application of the maximum theorem

Recall that ψω,x,η(π) =
〈
∇F̄π,η(ω),x− ω

〉
.

Lemma 17. For any ϵ > 0, there exists a constant ξϵ > 0 such that if ∥π − µ∥∞ < ξϵ, then
|ψω,x,η(π)− ψω,x,η(µ)| < ϵ, ∀(ω,x) ∈ Σ+ ×X , ∀η ∈ (0, min

k∈[K]
ωk). (50)

The proof of Lemma 17 replies on the celebrated maximum theorem [FKV14], which is introduced
below. After that, we then show its proof.

Maximum Theorem: Here we briefly introduce the maximum theorem and Lemma 17 will be proved
at the end of this section. The definitions and results are taken from [FKV14] (see also Appendix K.1
of [WTP21]).
Definition 1. Let U ̸= ∅ be a subset of a topological space and h : U 7→ R be a function. Define the
level sets of h for y ∈ R as

Lh(y, U) = {x ∈ U : h(x) ≤ y} and L<
h (y, U) = {x ∈ U : h(x) < y}.

The function h is said to be lower semi-continuous (resp. upper semi-continuous) on U if Lh(y, U)

are closed (resp. L<
h (y, U) are open) for all y ∈ R; h is said to be inf-compact on U if Lh(y, U)

and L<
h (y, U) are compact for all y ∈ R.

Definition 2. Let X and Y be Hausdorff topological spaces and Φ : X ⇒ S(Y) be a set-valued
function, where S(Y) is the set of non-empty subsets of Y. Define

GrU (Φ) = {(x, y) ∈ U × Y : y ∈ Φ(x)}
as the graph of Φ restricted to U . The function u : X × Y 7→ R is said to be K-inf-compact on
GrX(Φ) if for all non-empty compact subset C of X, u is inf-compact on GrC(Φ).
Theorem 6 (Maximum theorem). Suppose X is compactly generated, Φ : X ⇒ S(Y) is lower
hemicontinuous, and u : X × Y 7→ R is K-inf-compact and upper semi-continuous on GrX(Φ).
Then, the function v(x) = infy∈Φ(x) u(x, y) is continuous and the set of its optimal solutions
Φ⋆(x) = {y ∈ Φ(x) : u(x, y) = v(x)} is upper hemicontinuous and compact-valued.

39

Appendix C. Closing the computational-statistical gap in combinatorial BAI 138



Proof of Lemma 17: Fix any µ ∈ Λ and let i⋆ = i⋆(µ). The goal is to show that for any ϵ > 0,
there exists a constant ξϵ > 0 such that if ∥π − µ∥∞ < ξϵ, then

|ψω,x,η(π)− ψω,x,η(µ)| < ϵ, ∀(ω,x) ∈ Σ+ ×X , ∀η ∈ (0, min
k∈[K]

ωk), (50)

where ψω,x,η(π) =
〈
∇F̄π,η(ω),x− ω

〉
. In what follows, we will use p to denote the probability

distribution of Uniform(B2). We will first show that ψω,x,η is continuous for each fixed (ω,x, η) ∈
Σ+ ×X × (0, 1), and then use Theorem 6 to show (50).

Continuity of ψω,x,η: Fix (ω,x, η) ∈ Σ+ ×X × (0, 1). Let Uη = {z ∈ B2 : |∂Fµ(ω + ηz)| > 1}
which is a measure-zero set under p (Lemma 20 in Appendix H). For its complement set B2\Uη,
we split B2\Uη = ∪y ̸=i⋆Bη(y) into possibly overlapping sets Bη(y) = {z ∈ B2\Uη : ∇Fπ,η(ω +
ηz) = ∇ωfy(ω + ηz,π)}, and define ψω,y,η(y, ·) =

∫
z∈Bη(y)

⟨∇ωfy(ω + ηz, ·),x− ω⟩ dp(z)
on each of these sets Bη(y). Observe that for any π ∈ RK , we have

ψω,x,η(π) =

∫

z∈B2\Uη

⟨∇Fπ,η(ω + ηz),x− ω⟩ dp(z) =
∑

y ̸=i⋆

ψω,y,η(y,π).

To show the continuity of ψω,x,η(π), it suffices to show that each ψω,x,η(y, ·) is continuous. Fix
y ∈ X\{i⋆} and any sequence {πn}∞n=1 converging to µ. Then, for any ∀z ∈ B2, we have

(i) |⟨∇ωfy(ω + ηz,πn),x− ω⟩| ≤ ∥∇ωfy(ω + ηz,πn)∥∞ ∥x− ω∥1 ≤ 2Dℓ

(ii) limn→∞ ⟨∇ωfy(ω + ηz,πn),x− ω⟩ = ⟨∇ωfy(ω + ηz,µ),x− ω⟩. This is because
∇ωfy(ω + ηz, ·) = ⟨i⋆−y,·⟩2(i⋆⊕y)⊙(ω+ηz)−2

2⟨i⋆⊕y,(ω+ηz)−1⟩2 by Lemma 19 and Proposition 1 (Ap-
pendix C.1) is obviously continuous and that function composition preserves continuity.

From (i) and (ii), the dominated convergence theorem implies that

ψω,x,η(y,µ) = lim
n→∞

∫

z∈Bη(y)

⟨∇ωfy(ω + ηz,πn),x− ω⟩ dp(z).

This shows the continuity of ψω,x,η(y, ·) for each y ̸= i⋆, and thus ψω,y,η is continuous.

Application of the maximum theorem (Theorem 6): For this part, we take the approach similar to
Lemma 6 in [WTP21]. Define

ϕ(π) = min {−|ψω,x,η(π)− ψω,x,η(µ)| : (ω,x, η) ∈ Σ+ ×X × (0, 1)} .

We prove the continuity of ϕ on S = RK\cl (Alt(µ)) by invoking Theorem 6 with the following
substitutions:

• X = S,
• Y = Σ+ ×X × (0, 1),

• Φ = Σ+ ×X × (0, 1),
• u(π,ω,x, η) = −|ψω,x,η(π)− ψω,x,η(µ)|.

Here we verify that the assumptions of Theorem 6 are satisfied. X is compactly generated as S is a
metric space; Φ is continuous as it is a constant map; u is continuous due to the continuity of ψω,x,η .
To show that u is K-inf compact, consider any compact set C ⊂ S and any y ∈ R. We see that
Lu(y, C × Σ+ × X × (0, 1)) is compact because it is bounded (as Σ+ × X × (0, 1) is bounded
and C is compact) and closed (as u is continuous and the preimage of [0, y] is closed). Hence, ϕ is
continuous on S by Theorem 6. Finally, by ϕ(µ) = 0 and the continuity of ϕ, there exists ξϵ > 0
such that ϕ(π) > −ϵ for any ∥π − µ∥∞ < ξϵ. This completes the proof of (50). □

G.2 The length of gradients

Throughout this subsection, we fix µ ∈ Λ and denote i⋆ = i⋆(µ),△x = △x(µ), and△min(µ) =
△min for short. Here we aim to present Proposition 4, in which (i) quantifies how close an estimate π
of µ should be such that i⋆(π) = i⋆, and (ii) asserts the continuity of any component of∇ωfx(ω,π)
in π, and that its gradient with respective to π is bounded.

Proposition 4. Any π ∈ RK such that ∥π − µ∥∞ < △min√
2KD

satisfies
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(i) i⋆(π) = i⋆,

(ii) ∀x ∈ X\{i⋆} and all k ∈ [K], ∂fx(ω,π)
∂ωk

is continuous in π and
∥∥∥∥∇π

(
∂fx(ω,π)

∂ωk

)∥∥∥∥
1

≤ 12D2 ∥µ∥∞ .

Proof Proof of (i): Lemma 18 is equivalent to that: any π ∈ RK satisfying ∥µ− π∥∞ < △min√
2KD

implies that π /∈ cl (Alt(µ)). As closure of finite union equals union of closures,

RK\cl (Alt(µ)) = RK\
(
∪x̸=i⋆cl

(
{λ ∈ RK : ⟨i⋆ − x,λ⟩ < 0}

))

= RK\
(
∪x̸=i⋆{λ ∈ RK : ⟨i⋆ − x,λ⟩ ≤ 0}

)

= {λ ∈ RK : i⋆(λ) = i⋆}.
Thus, π /∈ cl (Alt(µ)) is equivalent to i⋆(π) = i⋆. This concludes the proof of (i).

Proof of (ii): Fix any π ∈ RK satisfying ∥µ− π∥∞ < △min√
2KD

. By Lemma 19 and i⋆(π) = i⋆,

∀k ∈ [K],
∂fx(ω,π)

∂ωk
=
⟨i⋆ − x,π⟩2 (xk ⊕ i⋆k)
2 ⟨x⊕ i⋆,ω−1⟩2 ω2

k

.

Fix k ∈ [K]. Note that the function π 7→ ∂fx(ω,π)
∂ωk

is continuous and differentiable since it consists of
inner products, element-wise products, and since its denumerator is always positive. For its derivative,

∥∥∥∥∇π

(
∂fx(ω,π)

∂ωk

)∥∥∥∥
1

=

∥∥∥∥∥
(i⋆ − x) ⟨i⋆ − x,π⟩ (xk ⊕ i⋆k)

⟨x⊕ i⋆,ω−1⟩2 ω2
k

∥∥∥∥∥
1

≤ ∥(i⋆ − x) ⟨i⋆ − x,π⟩ (xk ⊕ i⋆k)∥1
≤ ∥i⋆ − x∥1 |⟨i⋆ − x,π⟩| ≤ 4D2 ∥π∥∞ ≤ 12D2 ∥µ∥∞ ,

where the first inequality is because
〈
x⊕ i⋆,ω−1

〉
ωk ≥ 1 if (xk ⊕ i⋆k) = 1; the second is because

xk ⊕ i⋆k ≤ 1; the third uses ∥i⋆ − x∥1 ≤ 2D and |⟨i⋆ − x,π⟩| ≤ ∥i⋆ − x∥1 ∥π∥∞; the last uses the
triangle inequality:

∥π∥∞ ≤ ∥µ∥∞ + ∥µ− π∥∞ ≤ ∥µ∥∞ +
△min√
2KD

≤ 3 ∥µ∥∞ ,

where the last inequality is due to an application of Hölder’s inequality to

△min ≤ min
x̸=i⋆

∥i⋆ − x∥1 ∥µ∥∞ ≤ 2D ∥µ∥∞ .

□

Lemma 18. infλ∈Alt(µ) ∥µ− λ∥∞ ≥ △min√
2KD

.

Proof We claim that

inf
λ∈Λ:⟨λ,i⋆−x⟩<0

∥µ− λ∥22 =
△x

∥i⋆ ⊕ x∥2
, ∀x ̸= i⋆. (51)

Observe that the proof immediately follows from (51) because the facts that ∥y∥2 ≤
√
K ∥y∥∞ for

any y ∈ RK , Alt(µ) = ∪x̸=i⋆{λ ∈ Λ : ⟨λ, i⋆ − x⟩ < 0}, and ∥i⋆ ⊕ x∥2 ≤
√
2D.

Proof of (51): By solving the stationary conditions, i.e.,∇λLx(λ
⋆
x, α

⋆) = 2(µ−λ⋆
x)+α

⋆(i⋆−x) =
0 and ∇αLx(λ

⋆
x, α

⋆) = ⟨λ⋆
x, i

⋆ − x⟩ = 0, we find

λ⋆
x = µ− △x(µ)⊙ (i⋆ − x)

∥i⋆ ⊕ x∥22
is a minimizer for infλ∈Λ:⟨λ,i⋆−x⟩<0 ∥µ− λ∥2. (51) follows by plugging λ⋆

x into ∥µ− λ∥22. □

Remind that∇ωfx can be evaluated by the following Lemma 19.
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Lemma 19 (Envelope theorem). Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆}. Define λ⋆
ω,µ(x) ∈

argminλ∈cl(Cx)

〈
ω, (µ−λ)2

2

〉
. Then,

∇ωfx(ω,µ) =
(µ− λ⋆

ω,µ(x))
2

2
=
△x(µ)

2(x⊕ i⋆)⊙ ω−2

2 ⟨x⊕ i⋆,ω−1⟩2
.

Proof The first equality is an application of Lemma 6 and Proposition 1 of [WTP21] with I = X ,
Jx = {x}, Σ = ΣK , Sx = {λ ∈ Λ : i⋆(λ) = x} (see Appendix K.2 and Appendix K.4 in
[WTP21] for more details). The second equality substitutes λ⋆

ω,µ(x) = µ+ △x(µ)(x−i⋆)⊙ω−1

⟨x⊕i⋆,ω−1⟩ by
using (11)-(14). □
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H Stochastic smoothing

This section is devoted to present Proposition 2 and verify the assumptions required for applying
Proposition 2 to our objective Fµ.

Stochastic smoothing [FKM05, DBW12] is a well-studied technique and has been widely applied
to online convex nonsmooth optimization [HK12, H+16]. Proposition 2 is a restatement of existing
results. In particular, Proposition 2 (i), (ii) and (iii) directly follow from Lemma E.2 in [DBW12] with
(L0, u) = (ℓ, η), f = −Φ and fu = −Φ̄η(·), and Proposition 2 (iv) can be established by Jensen’s
inequality as done in the proof of Theorem 2.1 [DBW12].
Proposition 2. Assume that Φ : RK

>0 7→ R is concave, ℓ-Lipschitz, and differentiable almost
everywhere. Let B2 = {v ∈ RK : ∥v∥2 ≤ 1}. For any ω ∈ Σ+ and η ∈ (0,mink∈[K] ωk), define

Φ̄η(ω) = EZ∼Uniform(B2)[Φ(ω + ηZ)] . (6)

Then, Φ̄η(ω) satisfies that:

(i) Φ(ω)− ηℓ ≤ Φ̄η(ω) ≤ Φ(ω)

(ii) ∇Φ̄µ,η(ω) = EZ∼Uniform(B2)[∇Φµ(ω + ηZ)]

(iii) Φ̄η is ℓK
η -smooth

(iv) if η > η′ > 0, then Φ̄η′(ω) ≥ Φ̄η(ω)

Now, we validate assumptions of Proposition 2 on Fµ. The concavity of Fµ, which is shown by
[WTP21], follows from the facts that each fx(·,µ) is concave and that Fµ is a minimum of these
functions fx(·,µ) over all possible x. The Lipschitzness of Fµ is shown in Lemma 21 in Appendix I).
Hence, it remains to show the almost-everywhere differentiability of Fµ. To show that the set of
non-differentiable points of Fµ, i.e.,

⋃

x,x′∈X\{i⋆(µ)},x ̸=x′

{z ∈ B2 : fx((ω + ηz,µ) = fx′(ω + ηz,µ)} ,

is measure-zero under Uniform(B2), it suffices to show the following lemma.
Lemma 20. Let µ ∈ Λ and x1,x2 be distinct actions in X\{i⋆(µ)}. Then under the probability
measure of Uniform(B2),

{z ∈ B2 : fx1
(ω + ηz,µ) = fx2

(ω + ηz,µ)}
is a measure-zero set.

Proof To simplify the notation, let i⋆ = i⋆(µ) and △x = △x(µ). Thanks to the close-form
expressions of fx1 and fx2 , z ∈ B2 such that fx1(ω + ηz,µ) = fx2(ω + ηz,µ) are the points
satisfying that:

△2
x1

2 ⟨x1 ⊕ i⋆, (ω + ηz)−1⟩ =
△2

x2

2 ⟨x2 ⊕ i⋆, (ω + ηz)−1⟩ .

In other words, the set of interests is


z ∈ B2 :

K∑

k=1

ak
∏

k′ ̸=k

(ωk′ + ηzk′) = 0



 , (52)

where ak = (x2 ⊕ i⋆)k△2
x1
− (x1 ⊕ i⋆)k△2

x2
for all k ∈ [K]. We claim that a is a non-zero

vector. Otherwise, ak = 0,∀k ∈ [K], which together with the fact that △2
x1
,△2

x2
> 0 directly

imply (x2 ⊕ i⋆)k = 0 if and only if (x1 ⊕ i⋆)k = 0. That means x1 = x2, but this becomes a
contradiction. Therefore, the set in (52) are the roots of a non-zero polynomial inside B2, and hence
it is a measure-zero set (see e.g. Lemma in [Oka73]). □
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I Lischitzness of Fµ and boundness of Fµ on ΣK ∩ RK
>0

In this section, we show the Lipschitzness of Fµ(v) = minx̸=i⋆ fx(v,µ) for v ∈ RK
>0. Let xe be

an equilibrium action such that Fµ(v) = fxe(v,µ). We will use the envelope theorem (Lemma 19
in Appendix G) to evaluate ∇ωfxe(v,µ) in closed-form, and then bound its length. We will also
derive an upper bound of Fµ(v) valid for any positive vector v in the (K − 1)-dimensional simplex
ΣK . In what below, we denote i⋆ = i⋆(µ) and△x = △x(µ) for any x ̸= i⋆ for short.

Lemma 21. Let µ ∈ Λ and ℓ = 2D2 ∥µ∥2∞. Then, Fµ is ℓ-Lipschitz with respect to ∥·∥∞ on RK
>0,

Proof Let v ∈ RK
>0. Recall that Fµ(v) = minx ̸=i⋆ fx(v,µ), and each fx(v,µ) is differentiable

(proven in Lemma 19 in Appendix G.2). Hence if x is the action such that Fµ(v) = fx(v,µ), the
concavity of Fµ(v) and the fact that∇ωfx(v,µ) is the subdifferential of Fµ on v yield that

∀v′ ∈ RK
>0, |Fµ(v)− Fµ(v

′)| ≤ |⟨∇ωfx(v,µ),v − v′⟩| ≤ ∥∇ωfx(v,µ)∥1 ∥v − v′∥∞ ,

where the last inequality stems from Hölder’s inequality. From the above, the ℓ-Lipschitz can be
derived by upper bounding ∥∇ωfx(v,µ)∥1 by ℓ. Now applying Lemma 19 in Appendix G.2 yields

∥∇ωfx(v,µ)∥1 =

∥∥∥∥∥
(µ− λ⋆

v,µ(x, α
⋆
x))

2

2

∥∥∥∥∥
1

=

∥∥v−2 ⊙ (x⊕ i⋆)
∥∥
1
△2

x

2 ⟨x⊕ i⋆,v−1⟩2
. (53)

To simplify the above, we observe that

〈
x⊕ i⋆,v−1

〉2
=

(
K∑

k=1

v−1
k 1{xk ̸= i⋆k}

)2

≥
K∑

k=1

v−2
k 1{xk ̸= i⋆k} =

∥∥v−2 ⊙ (x⊕ i⋆)
∥∥
1
, (54)

where the inequality uses the fact that vk > 0 for all k ∈ [K]. Also,

△x = ⟨i⋆ − x,µ⟩ ≤ ∥i⋆ − x∥1 ∥µ∥∞ ≤ 2D ∥µ∥∞ . (55)

Thus, (53)-(54)-(55) yields that ∥∇ωfx(v,µ)∥1 ≤ 2D2 ∥µ∥2∞. □

Lemma 22. Let µ ∈ Λ and ℓ = 2D2 ∥µ∥2∞. Then, maxω∈ΣK∩RK
>0
Fµ(ω) ≤ ℓ.

Proof Observe that fx(v,µ) = ⟨ω,∇ωfx(v,µ)⟩ for any x ̸= i⋆. Combining this observation
with the fact that△x ≤ 2D ∥µ∥∞ (as argued in (54) in proof of Lemma 21) implies:

Fµ(v) = min
x ̸=i⋆

△2
x

2 ⟨x⊕ i⋆,v−1⟩ ≤
(2D ∥µ∥∞)2

2
= ℓ,

where the first inequality is because
〈
x⊕ i⋆,v−1

〉
≥ mink∈[K] v

−1
k ≥ 1 (as v ∈ ΣK and vk > 0

for all k ∈ [K]).The proof is completed since v is taken arbitrarily. □
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J Proofs related to combinatorial sets

Assumption 1. (i) There exists a polynomial-time algorithm identifying i⋆(v) for any v ∈ RK; (ii)
X is inclusion-wise maximal, i.e., there is no x,x′ ∈ X s.t. x < x′; (iii) for each k ∈ [K], there
exists x ∈ X such that xk = 1; (iv) |X | ≥ 2.

As claimed in §2.2, Assumption 1 holds for the following combinatorial sets:

• m-sets: X = {x ∈ {0, 1}K : ∥x∥1 = m}
• spanning forests: X is a set of all spanning forests in a given graph
• bipartite matchings: X is a set of all maximal matchings in a given bipartite graph
• s-t paths: X is the set of all source-destination paths in a directed acyclic graph

In what below, we present a simple proof for the above examples.

Proof Suppose (iii) (iv) hold (as we can always achieve (iii) by removing arms not covered by
X and (iv) holds for non-trivial sets). For (i), it is well-known that a polynomial-time LM Oracle,
i.e., i⋆(·), exists for each of the discussed combinatorial structures. For example, see Chapter 39 in
[S+03] for the greedy algorithm for matroids (applicable to m-set and spanning forests), Chapter 41
in [S+03] for the augmentation-based algorithm for 2-matroid intersection (applicable to bipartite
matchings), and algorithms such as Dijkstra’s algorithm for s-t paths.

It remains to verify (ii) the inclusion-wise maximal property of X . For X as m-sets, the inclusion-
wise maximal property clearly holds because any binary vector x′ > x (resp. x′ < x) for some
x ∈ X must have

∑
k∈[K] x

′
k > m (resp. < m) and thus x′ /∈ X . The case is similar for X as

spanning forests since the number of edges of any spanning forests of a graph is the same. For X
as maximal matchings in which the term ’maximal’ exactly refers to being inclusion-wise maximal,
(ii) directly follows from the definition. For X as the set of all source-destination paths in an acyclic
graph, if there exists any source-destination path x′ > x for some x ∈ X then x′ must contain a
cycle, so inclusion-wise maximal property holds. □
Lemma 2. Let v ∈ RK and x ∈ X . Under Assumption 1, there exists an algorithm that solves
maxx′∈X :x′ ̸=x ⟨v,x′⟩ by only making at most D queries to the LM Oracle.

Proof Fix x ∈ X . Assume v ̸= 0K (as otherwise, any x′ ̸= x is a second-best action). Inspired by
Lawler-Murty’s m-best algorithm [Law72], we will prove this lemma by considering the algorithm
described as follows. It first computes i⋆(v) by the LM Oracle, and returns it as the output if
i⋆(v) ̸= x. Otherwise, we identify the second-best action by the program below:

max
k∈[K]:xk=1

〈
v, i⋆

(
v(k)

)〉
, where v

(k)
i =

{−3 ∥v∥1 if i = k

vi otherwise.
(56)

Intuitively, for each arm k of x, the action i⋆
(
v(k)

)
represents the best one among all actions without

k (we have a strong negative weight on the k-th component of v(k)). In the following, we will show
that at least one of {i⋆

(
v(k)

)
: k ∈ [K], xk = 1} is the second-best action.

More precisely, we will show that for any maximizer a ∈ [K] to (56), i⋆
(
v(a)

)
is a second-best

action. Consider if (i⋆
(
v(a)

)
)a = 0, then the claim follows from the fact that i⋆

(
v(a)

)
is the best

among all actions without a and also the best in {i⋆
(
v(k)

)
: k ∈ [K], xk = 1}. It suffices to show

that (i⋆
(
v(a)

)
)a = 1 cannot happen. If (i⋆

(
v(a)

)
)a = 1, then it follows from Assumption 1 (iv)

|X | ≥ 2 and (ii) the inclusion-wise maximality of X that there is another action x′ such that x′k = 0

but xk = 1 for some k ∈ [K]. So, by i⋆
(
v(a)

)
a
= 1, v ̸= 0K and the definition of v(a), we get

〈
v, i⋆

(
v(a)

)〉
=

∑

j∈[K]:i⋆(v(a))
j
=1,j ̸=a

vj − 3 ∥v∥1 ≤ −2 ∥v∥1 < ⟨v,x′⟩ ≤
〈
v, i⋆

(
v(k)

)〉
,

which contradicts the optimality of a (as it would imply that i⋆
(
v(k)

)
is better).

45

Appendix C. Closing the computational-statistical gap in combinatorial BAI 144



Finally, as ∥x∥1 ≤ D, the number of LM Oracle calls required for solving (56) is at most D. □

Finally, we present the property of X0 briefly argued in § 4.2.
Lemma 23. Let ek is the k-th column of an identity matrix. Under Assumption 1, X0 is a [K]-
covering set and |X0| ≥ 2.

Proof Showing that X0 covers [K]: Assumption 1 (iii) ensures {x ∈ X : xk = 1} ≠ ∅, and it
follows that maxx∈X ⟨x, ek⟩ = 1, i.e., (i⋆(ek))k = 1. As (i⋆(ek))k = 1 holds for all k, the proof
is completed.

Showing that |X0| ≥ 2: Suppose on the contrary, |X0| = 1. Thanks to Assumption 1 (iv) |X | ≥ 2,
there exists x ∈ X such that xk = ⟨ek, x⟩ ≥ ⟨ek, x′⟩ = x′k for all k ∈ [K], x′ ̸= x. Together with
Assumption 1 (iii), one can easily deduce that xk = 1 for all k ∈ [K]. However, this implies x′ < x
for any x′ ̸= x and hence contradicts to Assumption 1 (ii) that X is inclusion-wise maximal. □
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K Sample complexity lower bound

In this section, we assume µ ∈ Λ and δ ∈ (0, 1) is fixed, and show Theorem 7 by adapting Lemma 19
in [KCG16].
Lemma 24 ([KCG16]). Any δ-PAC algorithm satisfies

∀λ ∈ Alt(µ),
∑

k∈[K]

∑

x∈X :xk=1

Eµ[Nx(τ)]
(µk − λk)2

2
≥ kl(δ, 1− δ). (57)

Theorem 7. Any δ-PAC strategy satisfies

Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ) with T ⋆(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
, (1)

where Σ = {∑x∈X wx : w ∈ Σ|X |} and Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}.

Proof We have: under any algorithm,

sup
ω∈Σ

inf
λ∈Alt(µ)

∑

k∈[K]

ωk
(µk − λk)2

2
≥ inf

λ∈Alt(µ)

∑

k∈[K]

∑

x∈X :xk=1

Eµ[Nx(τ)]

Eµ[τ ]

(µk − λk)2
2

,

Hence if the algorithm is δ-PAC, by Lemma 24,

Eµ[τ ] sup
ω∈Σ

inf
λ∈Alt(µ)

∑

k∈[K]

ωk
(µk − λk)2

2
≥ inf

λ∈Alt(µ)

∑

k∈[K]

∑

x∈X :xk=1

Eµ[Nx(τ)]
(µk − λk)2

2

≥ kl(δ, 1− δ).
□

Lemma 1. For any µ ∈ Λ, T ⋆(µ) ≤ 4KD△min(µ)
−2.

Proof Take ω0 =
∑

x∈X0
x/|X0| ∈ Σ, where X0 = {i⋆(ek) : k ∈ [K]}. Observe that ω0 ≥

1K/K by Lemma 23 (which leads to
∑

x∈X0
x ≥ 1K and 1/|X0| ≥ 1/K). Thus,

Fµ(ω0) = min
x ̸=i⋆(µ)

△x(µ)
2

2
〈
x⊕ i⋆(µ),ω−1

0

〉 ≥ △min(µ)
2

4KD
,

where we used Proposition 1 in §3.1 to obtain the equality, and the last inequality is because

〈
x⊕ i⋆(µ),ω−1

0

〉
≤ ∥x⊕ i⋆(µ)∥1

∥∥ω−1
0

∥∥
∞ ≤

2D

mink∈[K](ω0)k
≤ 2KD.

As T ⋆(µ)−1 = maxω∈Σ Fµ(ω) ≥ Fµ(ω0), we then have T ⋆(µ) ≤ 4KD
△min(µ)2 . □
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L Extension to the transductive setting

In this section, we extend our results to the transductive combinatorial semi-bandits. In transductive
best-arm identification with fixed confidence with semi-bandit feedback [JMKK21], the decision
maker is given an exploration set A ⊆ {0, 1}K and a decision set X ⊆ {0, 1}K (A might differ from
X ), and at each round, she selects an action in A to receive a semi-bandit feedback. Her goal is to
identify the best action in X using as few samples as possible.

Notation. LetM⊆ {0, 1}K be any set of actions. We use i⋆M(µ) to denote any maximizer inM
of the linear maximization maxx∈M ⟨x,µ⟩. We also use ΣM = {∑x∈M wx : w ∈ Σ|M|}.

Sample complexity lower bound. The generalization of Theorem 7 to the transductive setting has
been made in [JMKK21]: any δ-PAC algorithm satisfies

Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ) with T ⋆(µ)−1 = sup
ω∈ΣA

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
. (58)

The inner optimization is still with respect to X while the outer optimization is with respect to the
exploration set A. Refer to Appendix C in [JMKK21] for the proof.

Transductive P-FWS algorithm. Assumption 1 has to be extended. It now needs to ensure that
i⋆A(v) for any v ∈ RK can be computed in polynomial-time. The P-FWS algorithm also needs to be
adapted to the transductive setting. This is done by the following two modifications:

• [K]-covering set: X0 ← {i⋆A(ek) : k ∈ [K]}

• FW update: x(t)← i⋆A
(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)

Analysis of P-FWS. Let DA = maxx∈A ∥x∥1. The analysis is easily extended by replacing
(D,X ) with (DA,A) in Appendix D, Appendix E, Appendix F and Appendix G whenever the
context is subject to the exploration set rather than the decision set.
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D
Figure: A cat being rounded and having the minimum hitting set to play with.

We study the matroid semi-bandit problem and propose an algorithm that runs in
time sublinear to the number of arms for the common matroids while achieving the
gap-dependent regret lower bound by Kveton et al. [KWA+14]. The main technique
is rounding and the minimum hitting set.
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Ruo-Chun Tzeng 1 § Naoto Ohsaka 2 Kaito Ariu 2

Abstract
We study the matroid semi-bandits problem,
where at each round the learner plays a subset
of K arms from a feasible set, and the goal is to
maximize the expected cumulative linear rewards.
Existing algorithms have per-round time complex-
ity at least Ω(K), which becomes expensive when
K is large. To address this computational issue,
we propose FasterCUCB whose sampling rule
takes time sublinear in K for common classes
of matroids: O(D polylog (K) polylog (T )) for
uniform matroids, partition matroids, and graph-
ical matroids, and O(D

√
Kpolylog (T )) for

transversal matroids. Here, D is the maximum
number of elements in any feasible subset of
arms, and T is the horizon. Our technique is
based on dynamic maintenance of an approxi-
mate maximum-weight basis over inner-product
weights. Although the introduction of an approxi-
mate maximum-weight basis presents a challenge
in regret analysis, we can still guarantee an up-
per bound on regret as tight as CUCB in the sense
that it matches the gap-dependent lower bound by
Kveton et al. (2014a) asymptotically.

1. Introduction
Matroid semi-bandits model many real-world tasks. An
instance of matroid semi-bandit is described by ([K],X ,µ),
where [K] ≜ {1, · · · ,K} is the ground set, each k ∈ [K] is
associated with a probability distribution νk with mean µk,
andX ⊆ {0, 1}K is the set of bases of a given matroidM =
([K], I) of rank D. At each round t ∈ [T ], the learner pulls
an action x(t) ∈ X and observes a semi-bandit feedback,
i.e., yk(t) ∼ νk iff xk(t) = 1. This formulation can be
used to model online advertisting and news selection (Kale
et al., 2010) withM as a uniform matroid. Ad placement

§Work done during an internship at CyberAgent. 1EECS,
KTH Royal Institue of Technology, Sweden 2AI Lab, Cy-
berAgent, Japan. Correspondence to: Ruo-Chun Tzeng
<rubys88684@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

(Bubeck et al., 2013; Streeter et al., 2009) and diversified
recommendation (Abbassi et al., 2013) can be modeled with
M as a partition matroid. Network routing (Kveton et al.,
2014a) can be modeled withM as a graphical matroid. Task
assignment (Chen et al., 2016) can be modeled withM as
a transversal matroid.

Popular algorithms include Combinatorial Upper Confi-
dence Bound (CUCB) (Gai et al., 2012; Chen et al., 2013;
Kveton et al., 2014a; 2015), Combinatorial Thompson Sam-
pling (CTS) (Wang and Chen, 2018; Kong et al., 2021;
Perrault, 2022), and the instance-specifically optimal algo-
rithm KL-based Efficient Sampling for Matroids (KL-OSM)
(Talebi and Proutiere, 2016). All of these algorithms rely
on a greedy algorithm (see Algorithm 1) to determine the
action to be pulled. The greedy algorithm takes time at
least Ω(K) and at most O(K(logK + Tmember)), where
Tmember is the time taken to determine whether x+ ek ∈ I
for some (x, k) ∈ I × [K], and ek is the k-th canonical
unit vector. However, when the number K of arms is large,
performing the greedy algorithm at each round can become
expensive. There is a need to develop a matroid semi-bandit
algorithm with per-round time complexity sublinear in K.

In this work, we present FasterCUCB (Algorithm 5), the
first sublinear-time algorithm for matroid semi-bandit. The
design of FasterCUCB is based on CUCB, but with a much
faster sampling rule which takes time sublinear in K for
many classes of matroids. For uniform matroids, partition
matroids, and graphical matroids, it has per-round time com-
plexity of O(D polylog (K) polylog (T )), which is optimal
up to a polylogarithmic factor as compared to the trivial
lower bound of Ω(D). For transversal matroids, the per-
round time complexity is O(D

√
K polylog (T )), which is

still sublinear in K when D = O(K 1
2−ϵ) for any ϵ > 0.

FasterCUCB trades the accuracy for computational effi-
ciency. In other words, the action computed by the sampling
rule of FasterCUCB is an approximation to the optimal
solution computed by the sampling rule of CUCB. This intro-
duces difficulty in the regret analysis because prior analysis
of CUCB (Kveton et al., 2014a) requires the exact solution.
What is interesting is that we can still guarantee the same re-
gret upper bound asymptotically as prior analysis of CUCB.

To develop a sublinear-time sampling rule, we present a
dynamic algorithm for maintaining maximum-weight base

1
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CUCB FasterCUCB

Per-round Time Complexity O(K(logK + Tmember)) O(D polylog (T ) Tupdate(A))
Uniform Matroid O(K logK) O(D logK polylog (T ))
Partition Matroid O(K logK) O(D logK polylog (T ))

Graphical Matroid O(K logK) O(D polylog (K) polylog (T ))
Transversal Matroid O(K(logK +DK)) O(D

√
K polylog (T ))

Table 1. Per-round time complexity of CUCB (Kveton et al., 2014a) and FasterCUCB (Algorithm 5) for different classes of matroids.
K is the number of arms and D is the maximum number of elements in any action in X . Tmember for different matroids is discussed in
Appendix C. Tupdate(A) for different matroids is discussed in Section 3.

over inner product weights (Section 4). There have been
many sublinear-time algorithms for dynamic maximum-
weight base maintenance (see Section 3), which, however,
may not be directly used in FasterCUCB because all arm
weights representing the UCB index can change simultane-
ously at each round. Our insight for addressing this issue
is that the UCB index of each arm k at round t can be
decomposed into an inner product of the following two-
dimensional vectors: (1) a feature, which depends on k and
is supposedly a pair of the empirical reward estimate and ra-
dius of confidence interval, and (2) a query, which depends
only on round t. Our proposed dynamic algorithm consists
of two speeding-up techniques. One is feature rounding,
which rounds each feature into a few bins so as to reduce
the number of distinct features to consider. The other is the
minimum hitting set technique, which allows us to compute
a small number of queries in advance and correctly identify
an (approximate) maximum-weight base for any query.

Sections are organized as follows. We introduce matroid
semi-bandits and basic concepts in Section 2. We review
relevant literature in Section 3. We develop a dynamic algo-
rithm for maintaining a maximum-weight base over inner
product weights in Section 4. We propose FasterCUCB
based on the algorithms developed in Section 4 and analyzed
its regret and time complexity in Section 5.

2. Preliminaries
We use [n] to denote the set {1, · · · , n}. We use i⋆(µ) to
denote any element in argmaxx∈X ⟨µ,x⟩, and when it is
clear from the context, we drop µ from i⋆(µ) and write i⋆.
We use supp (·) to denote the support set of a given vector.
We use ek to denote the vector with 1 only on the k-th row
and 0’s elsewhere, and use 0K to denote a K-dimensional
vector with 0 on every row. We use log with base e. See
Appendix A for a table of notation.

Matroid. A matroid is described by M ≜ ([K], I),
where [K] is called the ground set and I ⊆ {0, 1}K is
the set of independent sets satisfying (i) hereditary property,
i.e., if supp (y) ⊂ supp (x) and x ∈ I, then y ∈ I; and

(ii) augmentation property, i.e., if x,y ∈ I and supp (y) ⊂
supp (x), then there exists j ∈ supp (x) \ supp (y) such
that y + ej ∈ I. We said x ∈ I is a basis if supp (x)
is maximal, i.e., there does not exist y ∈ I such that
supp (x) ⊂ supp (y). All bases have the same cardinality,

which is called the rank of the matroid. For v ∈ RK
+ , a

maximum-weight basis i⋆(v) ∈ argmaxx∈X
∑K

k=1 vkxk
can be found by a greedy algorithm (Algorithm 1) in
O(K(logK + Tmember)) time, where Tmember is the time
taken for the membership oracle to determine whether
x+ ek ∈ I for some x ∈ I and some k ∈ [K]\ supp (x).

Algorithm 1 A greedy maximum-weight basis algorithm
Input: v ∈ RK and the bases X ⊆ {0, 1}K .
Sort v in non-increasing order: vγ(1) ≥ · · · ≥ vγ(K);
x = 0K ; i = 1;
while ∥x∥0 < D do

if x+ eγ(i) ∈ I then
x← x+ eγ(i)

i← i+ 1;
end

Matroid semi-bandits. An instance of matroid semi-
bandit is described by ([K],X ,µ), where [K] is the ground
set, X ⊆ {0, 1}K is the set of bases of the given ma-
troid M ≜ ([K], I) of rank D, and I ⊆ {0, 1}K is
the set of independent sets. Each k ∈ [K] is associ-
ated with a distribution νk with mean µk. The learner
knows the matroid M, and aims to learn the best action
i⋆(µ) ∈ argmaxx∈X ⟨µ,x⟩ by playing a game with the en-
vironment: At each round t ∈ N, the learner plays an action
x(t), and the environment draws a noisy reward yk(t) ∼ νk
for each arm k ∈ [K] and reveals yk(t) to the learner iff
k ∈ supp (x(t)). We assume arms’ rewards are bounded:

Assumption 2.1. Assume the support of each arm νk is a
subset of [a, b] and 0 < a < b <∞.

The performance is measured by expected regret:

R(T ) ≜ T ⟨µ, i⋆(µ)⟩ − E

[
T∑

t=1

⟨µ,x(t)⟩
]
,

2
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which is the difference between the expected cumulative
reward of the learner and that of an algorithm who knows µ
and always selects the best action i⋆(µ).

Common classes of matroids. Refer to Chapter 39 (Schri-
jver, 2003) or Chapter 1 (Oxley, 2011) for more details.

• A uniform matroid ([K], I) of rank D has independent
sets I = {S ⊆ [K] : |S| ≤ D} and the bases X
consist of subsets whose cardinalities are exactly D.

• A partition matroid ([K], I) of rank D is given a parti-
tion S1, · · · , SD of the ground set [K], the independent
sets I = {S : |S ∩ Si| ≤ 1,∀i ∈ [D]}, and the bases
X are subsets that choose exactly one element from
each of the D sets.

• A graphical matroid is given a graph G = (V,E)
with K edges, the bases X consist of all spanning
forests in G, and the rank D is |V | minus the number
of connected components in G.

• A transversal matroid is given a bipartite graph G =
([K]∪V,E) with a bipartition ([K], V ), |V | ≤ K, the
independent sets I consist of S ⊆ [K] such that there
is a matching of S to |S| vertices in V , and X is the set
of endpoints in [K] of all maximum matchings in G.

We discuss the query time Tmember of membership oracle
in Appendix C. For more examples on semi-bandits under
different matroid constraints, we refer the readers to (Kveton
et al., 2014a) for linear matroids, and (Kveton et al., 2014b)
for polymatroid semi-bandits.

CUCB. The action selected by CUCB (Gai et al., 2012;
Chen et al., 2013; Kveton et al., 2014b) at round t ∈ N is:

x(t) ∈ argmax
x∈X

K∑

k=1

(
µ̂k(t− 1) +

λt√
Nk(t− 1)

)
xk,

(1)
where µ̂k(t) ≜ 1

Nk(t)

∑t
s=1 yk(s)1{xk(s) = 1} is the em-

pirical reward estimate, Nk(t) ≜
∑t

s=1 1{xk(s) = 1} is
the number of pulls of arm k, and λt > 0 controls the con-
fidence width. The value µ̂k(t − 1) + λt√

Nk(t−1)
is called

the UCB index of arm k. In (Kveton et al., 2014a), Eq. (1)
is solved by a O(K(logK + Tmember))-time greedy algo-
rithm shown in Algorithm 1. In Section 4, we will develop
a faster algorithm for solving Eq. (1) with the following
reformulation:

x(t) ∈ argmax
x∈X

K∑

k=1

⟨fk, q⟩xk,

where fk = (µ̂k(t− 1), 1√
Nk(t−1)

) and q = (1, λt).

3. Related Works
Semi-bandits and sublinear-time bandits. We provide
an extensive survey on related bandit literature in Ap-
pendix B. To summarize here, for semi-bandit algorithms,
CUCB (Gai et al., 2012; Chen et al., 2013; Kveton et al.,
2014a), CTS (Wang and Chen, 2018; Kong et al., 2021;
Perrault, 2022) and KL-OSM (Talebi and Proutiere, 2016)
all rely on a O(K(logK + Tmember))-time greedy algo-
rithm to compute the action to be pulled. In contrast, our
FasterCUCB, as far as we know, is the first semi-bandit
algorithm having per-round time complexity of o(K). For
linear bandits, there exist several works (Jun et al., 2017;
Yang et al., 2022) on reducing the per-round complexity to
be sublinear in the number of arms. But, their results trans-
ferred to our setting are worse than what we have obtained
both in terms of regret bound and the time complexity (see
the discussion in Appendix B).

Dynamic maintenance of maximum-weight base of a ma-
troid Here, we review existing dynamic algorithms for
maintaining a maximum-weight base of a matroid. In a stan-
dard (fully-)dynamic setting, we are given a weighted ma-
troidM = ([K], I), where each arm’s weight dynamically
changes over time in an online manner. The objective is to
maintain any (exact or approximate) maximum-weight basis
ofM over up-to-date arm weights as efficiently as possible.
We use Tupdate(A) to denote the time complexity of a dy-
namic algorithm A required for updating an (approximate)
maximum-weight base according to the change of a single
arm weight. The best-known bound of Tupdate(A) for each
matroid class is summarized as follows: For graphic ma-
troids, a maximum-weight basis can be updated in O(

√
K)

worst-case time (Frederickson, 1985; Eppstein et al., 1997)
and in O(polylog (K)) amortized time (Holm et al., 2001).
For laminar matroids (which include uniform and partition
matroids as special cases), the worst-case time complexity
for exact dynamic algorithms is bounded byO(logK) (Hen-
zinger et al., 2023). For transversal matroids, a O(K1.407)-
time exact dynamic algorithm is known (van den Brand
et al., 2019), while a (1 + η)-approximation dynamic algo-
rithm runs inO(η−2

√
K) time (Gupta and Peng, 2013). We

can safely assume that, after updating multiple arm weights,
A returns an (approximate) maximum-weight basis inO(D)
time, where D is the rank of a matroid.

4. Dynamic Maintenance of Maximum-weight
Base over Inner Product Weight

In this section, we develop a sublinear-time sampling rule,
which is used as a subroutine in FasterCUCB. Recall that
any static algorithm that solves the linear maximization of
Eq. (1) from scratch requires at least Ω(K) time, which
is computationally expensive. To circumvent this issue,

3
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we present a dynamic algorithm for maintaining an (ap-
proximate) maximum-weight base of a matroid where arm
weights change over time. The next subsection begins with
formalizing the problem setting.

4.1. Problem Setting and Technical Result

Consider the following problem setting: LetM = ([K], I)
be a matroid of rank D over K arms, and X be the set
of its bases. Each arm k ∈ [K] has a (nonnegative) two-
dimensional vector fk = (αk, βk) ∈ R2

+ referred to as
a feature, which may change as time goes by. Given a
(nonnegative) two-dimensional vector q ∈ R2

+ as a query,
we are required to find any (approximate) maximum-weight
base ofM, where arm k’s weight is given by projecting its
feature onto q, i.e., ⟨fk, q⟩.
Observe that in the matroid semi-bandit setting, each arm k’s
feature fk = (αk, βk) corresponds to a pair of the empirical
reward estimate αk = µ̂k(t−1) and radius βk = 1√

Nk(t−1)

of confidence interval, and a query is q = (1, λt) at round t,
both of which change over rounds.

Hereafter, we make the following two assumptions.

Assumption 4.1. Lower and upper bounds, denoted by αlb
and αub (resp. βlb and βub), on the possible positive values
of αk’s (resp. βk’s) at anytime are known; namely, it always
holds that αk ∈ {0} ∪ [αlb, αub] and βk ∈ {0} ∪ [βlb, βub].
The precise values of these bounds will be discussed in
Section 5.

Assumption 4.2. There exists a dynamic algorithm A for
maintaining a (1 + η)-approximate maximum-weight base
ofM with arm weights changing over time, where parame-
ter η ∈ (0, 1) specifies the approximation guarantee. Denote
by Tinit(A; η) and Tupdate(A; η) the time complexity of A
required for initializing the data structure and updating a
single arm’s weight, respectively. We can safely assume that
after updating multiple arm weights, A returns a maximum-
weight base inO(D) time. See Section 3 for existing imple-
mentations.

Our dynamic algorithm is parameterized by a precision
parameter ϵ ∈ (0, 1), and consists of the following three
procedures:

INITIALIZE: Given lower and upper bounds [αlb, αub]
and [βlb, βub] as in Assumption 4.1, K features
(αk, βk)k∈[K], a matroid M = ([K], I), a dynamic
algorithm A for maximum-weight base maintenance
as in Assumption 4.2, and a precision parameter ϵ,
this procedure initializes the data structure used in the
remaining two procedures.

FIND-BASE: Given a query q, this procedure is supposed
to return a (1+ ϵ)-approximate maximum-weight base

ofM, where arm k’s weight is defined as ⟨fk, q⟩ for
the up-to-date k’s feature fk.

UPDATE-FEATURE: Given an arm k and a new feature f ′
k,

this procedure reflects the change of arm k’s feature on
the data structure.

Remark 4.3. Our problem setting is different from a canoni-
cal setting of dynamic maximum-weight base maintenance
in a sense that the arm weights are revealed when a query
is issued in FIND-BASE. Consequently, existing dynamic
algorithms may not be used directly.

The technical result in this section is stated below.

Theorem 4.4 (∗). There exist implementations of INI-
TIALIZE, FIND-BASE, and UPDATE-FEATURE such that
the following are satisfied: FIND-BASE always returns a
(1 + ϵ)-approximate maximum-weight base of a matroidM
with arm k’s weight defined as ⟨fk, q⟩ for an up-to-date k’s
feature fk and a query q. Moreover, INITIALIZE runs in
O(K + poly (W ) · Tinit(A; ϵ

3 )) time, FIND-BASE runs in
O( poly (W ) +D) time, and UPDATE-FEATURE runs in
O( poly (W ) · Tupdate(A; ϵ

3 )) time, where

W = O
(
ϵ−1 · log

(
αub

αlb
· βub

βlb

))
. (2)

Remark 4.5. The proof of Theorem 4.4 can be easily adapted
to the case when (the update procedure of) dynamic al-
gorithm A has only amortized complexity. In such case,
Theorem 4.4 holds in the amortized sense rather than the
worst-case sense.

The remainder of this section is organized as follows: In
Section 4.2, we apply a rounding technique to arm features
to reduce the number of distinct features to consider, in
Section 4.3, we investigate the representability of permuta-
tions induced by inner product weights to deal with multiple
queries efficiently, and Section 4.4 finally develops our dy-
namic algorithm for maximum-weight base maintenance.
All proofs of the lemmas appearing in this section are de-
ferred to Appendix D.

4.2. Rounding Arm Features

Here, we apply a rounding technique to arm features so as to
reduce the number of distinct features to consider. Hereafter,
let η ≜ ϵ

3 , so that (1 + η)2 ≤ 1 + ϵ for ϵ ∈ (0, 1). Define

W ≜ max

{⌈
log1+η

(
αub

αlb

)⌉
,

⌈
log1+η

(
βub

βlb

)⌉}
,

W ≜ {−∞} ∪ [W ] = {−∞, 1, 2, 3, . . . ,W}.
(3)

Since any features are within ({0} ∪ [αlb, αub]) × ({0} ∪
[βlb, βub]) as guaranteed by Assumption 4.2, we shall parti-
tion the possible region of the features into |W|2 bins. For

4
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each q, r ∈ W, define BINq,r ⊂ R2
+ as

BINq,r ≜(αlb(1 + η)q−1, αlb(1 + η)q]

×(βlb(1 + η)r−1, βlb(1 + η)r],
(4)

where (αlb(1 + η)−∞, αlb(1 + η)−∞] ≜ {0}, (5)

(βlb(1 + η)−∞, βlb(1 + η)−∞] ≜ {0}. (6)

Note that these bins are pairwise disjoint, and that
∪q,r∈WBINq,r covers ({0}∪ [αlb, αub])× ({0}∪ [βlb, βub]);
i.e., any possible feature belongs to a unique BINq,r. For
each q, r ∈ W, let domq,r ∈ R2

+ denote the unique dominat-
ing point of BINq,r; namely,

domq,r ≜ (αlb(1 + η)q, βlb(1 + η)r). (7)

For any feature fk = (αk, βk), we will use dom(fk) =
dom(αk, βk) to denote the dominating point domq,r such
that fk ∈ BINq,r. See Figure 1 in Appendix D for illustra-
tion of BINq,r’s, domq,r’s, and dom(fk)’s.

Observe easily that for any feature fk ∈ R2
+ and query

q ∈ R2
+,

1

1 + η
· ⟨dom(fk), q⟩ < ⟨fk, q⟩ ≤ ⟨dom(fk), q⟩. (8)

By Eq. (8), we can replace each arm’s feature by its domi-
nating point without much deteriorating the quality of the
(approximate) maximum-weight base, as shown below.

Lemma 4.6 (∗). Let f1, . . . ,fK ∈ ({0} ∪ [αlb, αub]) ×
({0} ∪ [βlb, βub]) be K features, q ∈ R2

+ be a query, and
x∗
dom be a (1 + η)-approximate maximum-weight base of

matroidM with arm k’s weight defined as ⟨dom(fk), q⟩.
Then, for any base x ofM, it holds that

∑

k∈ supp(x∗
dom)

⟨fk, q⟩ ≥
1

1 + ϵ
·

∑

k∈ supp(x)

⟨fk, q⟩. (9)

In particular, x∗
dom is a (1 + ϵ)-approximate maximum-

weight base with arm k’s weight defined as ⟨fk, q⟩.

4.3. Handling Multiple Queries

From weighting to permutation. Now we deal with mul-
tiple queries. Our idea is that, if two queries q1, q2 ∈ R2

+

are “very close” to each other, then they should derive the
common maximum-weight base (provided that features are
fixed). This intuition can be justified with respect to order-
ings of arms. For two total orders ⪯ and ⪯◦ over [K], we
say that ⪯◦ is consistent with ⪯ if k ⪯◦ k′ implies k ⪯ k′
for any k ̸= k′. The following fact is easy to confirm:

Lemma 4.7 (∗). Let w = (w1, . . . , wK) ∈ RK
+ be K arm

weights and ⪯ be a total order over [K] such that k ⪰ k′ if
and only if wk ≥ wk′ . Let ⪯◦ be a total order over [K] that

is consistent with ⪯. If x◦ is a base of matroidM obtained
by running the greedy algorithm over any ordering of [K]
consistent with ⪯◦, it is a maximum-weight base ofM over
arm k’s weight wk; namely, for any base x ofM,

⟨x◦,w⟩ ≥ ⟨x,w⟩. (10)

Lemma 4.7 implies that any maximum-weight base can be
obtained by running the greedy algorithm over some total
order ⪯◦; moreover, we can safely assume that ⪯◦ is strict
(i.e., k ≺◦ k′ or k ≻◦ k′ for all k ̸= k′), or equivalently, a
permutation over [K]. Our strategy for dealing with multi-
ple queries is: (1) we enumerate all possible permutations
in advance, and (2) we guess a permutation consistent with
the arm weights determined based on a query. To this end,
the following question arises: What kind of and how many
permutations are representable given a fixed set of features?

Characterizing representable permutations. To answer
the above question, we characterize representable permuta-
tions. Hereafter, let SK denote the set of all permutations
over [K], and f1, . . . ,fK ∈ R2

+ be any fixed, distinct K
features. We say that a query q ∈ R2 over f1, . . . ,fK rep-
resents a permutation π ∈ SK if ⟨fπ(i), q⟩ > ⟨fπ(j), q⟩
for all 1 ≤ i < j ≤ K,1 and that π is representable if such
q exists.

For a permutation π ∈ SK to be representable, we wish
for some query q ∈ R2 to ensure that for any i < j, arm
π(i)’s weight is (strictly) higher than arm π(j)’s weight.
This requirement is equivalent to ⟨fπ(i) − fπ(j), q⟩ > 0;
thus, if the following system of linear inequalities is feasible,
any of its solutions q represents π:

⟨fπ(i) − fπ(j), q⟩ > 0 for all 1 ≤ i < j ≤ K. (11)

Observe now that the above system is feasible if and only
if the intersection of Pi,j for all i < j is nonempty, where
Pi,j is an open half-plane defined as

Pi,j ≜ {q ∈ R2 : ⟨fπ(i) − fπ(j), q⟩ > 0}. (12)

Because each Pi,j is obtained by dividing R2 by a unique
line that is orthogonal to line

←−−−−−→
fπ(i)fπ(j) and intersects the

origin 0, the set of feasible solutions for Eq. (11) is equal to
(the interior of) a polyhedral cone defined by the boundaries
of a particular pair of Pi,j’s.

Here, we characterize the representable permutations by the
concept of arrangement of lines. Let L ≜ {l1, . . . , l(K2 )}
denote

(
K
2

)
lines, each of which is orthogonal to line

←−−→
fkfk′

for some k ̸= k′ and intersects 0. Given such L, a cell C
1This definition does not allow “ties”; i.e., no pair k ̸= k′

satisfies ⟨fk, q⟩ = ⟨fk′ , q⟩.
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in arrangement of L is defined as a maximum connected
region of R2 that does not intersect with L (which is the
interior of a polyhedral cone). Then, for each cell C, every
query q in C represents the same permutation πC ∈ SK

depending only on C; namely, there is a bijection between
the representable permutations and the cells in arrangement
of L. See Figure 2 in Appendix D for illustration.

With this connection in mind, we demonstrate that reserv-
ing a single vector for each cell suffices to cover all repre-
sentable permutations. A minimum hitting set of the cells
in arrangement of L is defined as any minimum set H of
vectors in R2 such that H and each cell have a non-empty
intersection.

Lemma 4.8 (∗). LetH be a minimum hitting set of the cells
in arrangement of L. Then, for any query q ∈ R2, there
exists a vector h ∈ H such that for any k ̸= k′,

⟨fk,h⟩ > ⟨fk′ ,h⟩ =⇒ ⟨fk, q⟩ ≥ ⟨fk′ , q⟩. (13)

Lemma 4.8 along with Lemma 4.7 ensure that for any query
q ∈ R2, there is a vector h in H such that a maximum-
weight base with arm k’s weight ⟨fk,h⟩ is a maximum-
weight base with arm k’s weight ⟨fk, q⟩.

Generating a minimum hitting set. Subsequently, we
generate a minimum hitting set. One may think that it
requires exponentially long time because the number of
permutations in SK is K!. However, it turns out that the
number of cells in arrangement of L is O(K2) (i.e., so is
the number of representable permutations), and a minimum
hitting set can be constructed in poly (K) time.

Lemma 4.9 (∗). The number of cells in arrangement of
L is at most O(K2). Moreover, we can generate a mini-
mum hitting set in poly (K) time (by using Algorithm 6 in
Appendix D).

4.4. Putting It All Together: Algorithm Description and
Complexity

We are now ready to implement the three procedures. We
here stress that applying either of the feature rounding or
minimum hitting set technique separately does not make
sense: On one hand, if we only apply feature rounding, we
would have to recompute each arm’s weight every time a
query is issued, which is expensive. On the other hand, if
the minimum hitting set technique is only applied (to raw
features fk’s), then a minimum hitting set H cannot be
constructed in advance due to a dynamic nature of features,
and its size would be O(K2), which is prohibitive.

By applying both techniques, (1) we know a priori the
set of possible dominating points, whose size O(W 2) de-
pends only on W ; moreover, (2) we can create a minimum
hitting set H of size O(W 4) beforehand at initialization.

Pseudocodes of INITIALIZE, FIND-BASE, and UPDATE-
FEATURE are described in Algorithms 2 to 4, respectively.
The proof of Theorem 4.4 follows from Lemmas 4.6 to 4.9,
whose details are deferred to Appendix D.

In INITIALIZE, we construct a hitting set H of domq,r’s
and 1

1+η · domq,r’s rather than solely of domq,r’s, which
incurs a constant-factor blowup in the time complexity.
Though this change is not needed in the proof of Theo-
rem 4.4, the following immediate corollary of Lemma 4.8
is crucial in the regret analysis of Section 5.

Corollary 4.10 (∗). Let H be a minimum hitting set con-
structed in Algorithm 2. Then, for any query q ∈ R2, there
exists a vector h ∈ H such that for any dom = domq,r and
dom′ = domq′,r′ with q, r, q′, r′ ∈ W,

⟨dom,h⟩ > ⟨dom′,h⟩ =⇒ ⟨dom, q⟩ ≥ ⟨dom′, q⟩,

⟨dom,h⟩ > ⟨dom
′,h⟩

1 + η
=⇒ ⟨dom, q⟩ ≥ ⟨dom

′, q⟩
1 + η

.

Algorithm 2 INITIALIZE.
Input: lower and upper bounds [αlb, αub] and [βlb, βub]; K fea-

tures (fk)k∈[K]; precision parameter ϵ ∈ (0, 1).
Define W by Eq. (3);
for each q, r ∈ W do

Define BINq,r and domq,r by Eqs. (4) and (7);
end
Define η ≜ ϵ

3
;

Construct a minimum hitting setH of size O(W 4) for domq,r’s
and 1

1+η
· domq,r’s by Lemma 4.9;

for each h ∈ H do
Create an instance Ah of dynamic maximum-weight base

algorithm with precision parameter η ≜ ϵ
3

,M, and arm k’s
weight ⟨dom(fk),h⟩;

end

Algorithm 3 FIND-BASE.
Input: query q ∈ R2

+.
Find h ∈ H s.t. q and h belong to (the closure of) the same cell

in arrangement of V;
Call Ah and return the maximum-weight base x◦ ofM with arm
k’s weight ⟨dom(fk),h⟩;

Algorithm 4 UPDATE-FEATURE.
Input: arm k ∈ [K]; new feature f ′

k ∈ R2
+.

for each h ∈ H do
Change arm k’s weight stored in Ah to ⟨dom(f ′

k),h⟩;
end

5. Our Proposed Algorithm: FasterCUCB
In this section, we present FasterCUCB in Algorithm 5,
which uses procedures introduced in Section 4.

6
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The purpose of initialization procedure is to ensure each
arm is pulled at least once. It takes at most K rounds,
and in each round, the computation of i⋆(ek) takes O(K ·
Tmember) time because the permutation γ in Algorithm 1
can be specified explicitly as γ(j) = k if j = 1, γ(j) = j−1
if 2 ≤ j < k, and γ(j) = j + 1 if j ≥ k. So, it only
require to compute at most K membership tests. After the
initialization, the computation of each round t consists of
one call to FIND-BASE for computing the action x(t), the
update of µ̂k(t) and Nk(t) for each k ∈ supp (x(t)), and
one call to UPDATE-FEATURE for updating the feature of
each arm k ∈ supp (x(t)) stored in the instances of the
dynamic maxium-weight base algorithm.

Algorithm 5 FasterCUCB
Input: the total number of rounds T , λt, and m ∈ N
Initialization:

t = 0;
while ∃k ∈ [K] such that Nk(t) = 0 do

Pull i⋆(ek); t = t+ 1;
end
INITIALIZE

(
a, b, 1√

T
, 1, (µ̂k(t), Nk(t))k∈[K] ,

1
logm T

)

while t < T do
x(t)←FIND-BASE((1, λt));
Pull x(t) and receive yk(t) ∼ νk for each k ∈ supp (x(t));
for k ∈ supp (x(t)) do

Nk(t)← Nk(t− 1) + 1;
µ̂k(t)← t−1

t
µ̂k(t− 1) + 1

t
yk(t);

UPDATE-FEATURE

(
k,

(
µk(t),

1√
Nk(t)

))
;

end
t = t+ 1;

end

5.1. Per-round Time Complexity

By Theorem 4.4, one call to FIND-BASE takes
O ( poly (W ) +D) and D calls to UPDATE-FEATURE
take O(D poly (W ) Tupdate(A; ϵ

3 )). Since

W = O
(
logm T log

(
b

a

√
T

))
= O

(
logm+1 T

)
,

the per-round time complexity of Algorithm 5 is

O
(
D polylog (T ) Tupdate

(
A; ϵ

3

))

. Here, we will set ϵ = 1
logm T for the regret analysis.

5.2. Regret Upper Bound

Notation. Fix µ ∈ Λ and i⋆ ∈ argmaxx∈X ⟨µ,x⟩. We
introduce a few notation. Let {j}Dj=1 be the permutation of
supp (i⋆) such that µ1 ≥ · · · ≥ µD. Define △j,k ≜ µj −
µk and dk ≜ max{j ∈ [D] : △j,k > 0} for j ∈ supp (i⋆)
and k /∈ supp (i⋆), and△min ≜ mink/∈ supp(i⋆)△dk,k

.

Theorem 5.1. Let λt =
√

1.5(b− a)2 log t and m ∈ N.
Define T0 ≜ max{K, exp(( b

△min
)

1
m )}. For T ∈ N, the

expected regret of Algorithm 5 is upper bounded by

R(T ) ≤
∑

k/∈ supp(i⋆)




dk∑

j=1

△j,kT0 +
12△dk,k

(b− a)2 log T
(

µdk

1+log−m T
− µk

)2




+
∑

k/∈ supp(i⋆)

dk∑

j=1

△j,k

(
1

T
+
π2

6

)
+DbT0.

As a consequence of Theorem 5.1, setting T →∞ yields:

lim
T→∞

R(T )

log T
≤

∑

k/∈ supp(i⋆)

12(b− a)2
△dk,k

≤ O
(
K −D
△min

)
,

which matches Theorem 4 in (Kveton et al., 2014a),
lim infT→∞

R(T )
log T = Ω(K−D

△min
), asymptotically up to a con-

stant factor. Note that FasterCUCB is faster than CUCB
when △min = Ω( 1

polylog(K) ) and when T = poly (K).
Also, similar to (Cuvelier et al., 2021b), our per-round time
complexity also goes to infinity as T → ∞, one way to
address this issue is to use CUCB when the per-round time
complexity of ours is larger than that of CUCB.

Useful lemmas. Here we present two lemmas that will be
used to show Theorem 5.1 in Section 5.3. First, inspired
by Kveton et al. (2014a), we define a bijection gt from
supp (i⋆) to supp (x(t)) with the following properties:

Lemma 5.2. There exists a bijection gt : supp (i⋆) →
supp (x(t)) such that (i) gt(j) = j for j ∈ supp (i⋆) ∩
supp (x(t)); (ii) for any j ∈ supp (i⋆) \ supp (x(t)),

xgt(j)(t) = 1 =⇒
〈
dom(fgt(j)),h

〉
≥
〈
dom(f j),h

〉

1 + 1
3 logm T

.

The proof of Lemma 5.2 is in Appendix E.1, where an ex-
plicit construction of gt is provided. Property (i) allows
us to decompose the instantaneous regret ⟨i⋆ − x(t),µ⟩ =∑

k/∈ supp(i⋆)
∑

j∈ supp(i⋆)△j,k1{gt(j) = k}, and Property
(ii), Lemma 5.2, allows us to derive a bound of∑T

t=1 1{gt(j) = k} that relates with UCB values.

Second, for technical reasons, we need the precision pa-
rameter ϵ = log−m T to be small enough so that△i,j and
µi−(1+ϵ)µj have the same sign. The below lemma (proved
in Appendix E.2) gives the threshold to make it happen:

Lemma 5.3. Let ϵ < △min

b . Then, for any i ∈ supp (i⋆)
and any j /∈ supp (i⋆), µi − µj > 0 =⇒ µi

1+ϵ − µj > 0.

5.3. Proof of Theorem 5.1

For T ≤ T0, R(T ) is trivially bounded by T ⟨µ, i⋆⟩ ≤
DbT0. In the following, we assume T > T0.

7
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As gt is a bijection from supp (i⋆) to supp (x(t)) and
gt(j) = j for j ∈ supp (i⋆) ∩ supp (x(t)), we can rewrite

E[⟨i⋆ − x(t),µ⟩] =
∑

k/∈ supp(i⋆)

∑

j∈ supp(i⋆)

△j,kE[1{gt(j) = k}]

≤
∑

k/∈ supp(i⋆)

dk∑

j=1

△j,kE
[
1
{
gt(j) = k

}]

so that the expected regret is bounded from the above by:

R(T ) ≤
∑

k/∈ supp(i⋆)

dk∑

j=1

△j,kE

[
T∑

t=1

1
{
gt(j) = k

}
]

=
∑

k/∈ supp(i⋆)

dk∑

j=1

△j,k

(
(I)j,k + (II)j,k

)
,

where




(I)j,k =

∑T
t=1 E

[
1

{
gt(j) = k,Nk(t) ≤ nj,k

}]

(II)j,k =
∑T

t=1 E
[
1

{
gt(j) = k,Nk(t) > nj,k

}]

and nj,k = max

{
6(b−a)2 log T

(
µj

1+log−m T
−µk)2

, T0

}
. The proof is

completed by bounding related terms of (I)j,k and (II)j,k
by Lemma 5.4 (proved in Appendix E.2) and Lemma 5.5.
Lemma 5.4. Let k /∈ supp (i⋆) and j ∈ [dk]. For T > T0,

dk∑

j=1

△j,k(I)j,k ≤
dk∑

j=1

△j,kT0 +
12(b− a)2△dk,k

log T

(
µdk

1+log−m T
− µk)2

.

Lemma 5.5. Let k /∈ supp (i⋆) and j ∈ [dk]. For T > T0,

(II)j,k ≤
1

T
+
π2

6
.

Proof sketch: See Appendix E.2 for the entire proof. Let
ϵ ≜ 1

logm T . First, we claim:

gt(j) = k =⇒ uk(Nk(t− 1), T ) ≥
mins<t uj(s, t)

1 + ϵ
,

(14)
where uk(s, t) = µ̃k(s) +

λt√
s

and µ̃k(t) =
1
t

∑t
s=1 yk(s).

Show Eq. (14): Observe that gt(j) = k implies:
(
1 +

ϵ

3

)
⟨fk, q⟩ ≥ ⟨dom(fk), q⟩

≥

〈
dom(f j), q

〉

1 + ϵ
3

≥

〈
f j , q

〉

1 + ϵ
3

, (15)

where Eq. (8) is used in the first and the last inequality,
and the second uses Lemma 5.2 and Corollary 4.10. By
(1+ ϵ

3 )
2 ≤ 1+ϵ and expanding fk = (µ̂k(t−1), 1√

Nk(t−1)
)

and q = (1, λt), we derive from (15) that:

uk(Nk(t− 1), t) ≥
uj(Nj(t− 1), t)

1 + ϵ
,

and further by log T > log t and Nj(t− 1) ∈ [t− 1],

uk(Nk(t− 1), T ) ≥
uj(Nj(t− 1), t)

1 + ϵ
≥

mins<t uj(s, t)

1 + ϵ
,

which shows Eq. (14). Second, define

Tj,k = {t ∈ {nj,k+1, · · · , T} : gt(j) = k,Nk(t−1) > nj̄,k}.

From Eq. (14), (II)j,k is upper bounded by

E


 ∑

t∈∈Tj,k

1

{
uk(Nk(t− 1), T ) ≥

mins<t{uj(s, t)}
1 + ϵ

}


≤ E


 ∑

t∈Tj,k

∑

s<t

(1{A1,t,s}+ 1{A2,t,s}+ 1{A3,t,s})


 ,

(16)

where





A1,t,s =

{
µ̃k(Nk(t− 1)) ≥ µk + λT√

Nk(t−1)

}

A2,t,s =
{
µj ≥ µ̃j(s) +

λt√
s

}

A3,t,s =

{
µk + 2λT√

Nk(t−1)
>

µj

1+ϵ

} .

See Appendix E.2 for the derivation of Eq. (16). Observe
when t ∈ Tj,k,

1{A3,t,s} ≤ 1

{
µk +

2λT√
nj,k + 1

>
µj

1 + ϵ

}
= 0,

where the inequality is because Nk(t− 1) > nj,k, and the
equality is because

nj,k ≥
4λ2T

(
µj

1+ϵ − µk)2
=⇒ 4λ2T

nj,k + 1
<

(
µj

1 + ϵ
− µk

)2

,

and also
µj

1+ϵ − µk > 0 which is ensured by Lemma 5.3
as T > T0. Finally, from Eq. (16) and using Hoeffding’s
inequality, we get

(II)j,k ≤ E


 ∑

t∈Tj,k

∑

s<t

(1{A1,t,s}+ 1{A2,t,s})




≤
T∑

t=nj,k+1

∑

s<t

(
e−3 log T + e−3 log t

)
.

See Appendix E.2 for the derivation of the second inequality.
The proof is completed by evaluating
{∑T

t=1

∑
s<t e

−3 log T ≤∑T
t=1

t
T 3 ≤ T (T+1)

2T 3 ≤ 1
T∑T

t=1

∑
s<t e

−3 log t ≤∑∞
t=1

t
t3 ≤

∑∞
t=1

1
t2 ≤ π2

6

.

□
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6. Conclusion
In this paper, we have presented FasterCUCB, the first
sublinear-time algorithm for matroid semi-bandits. Several
possible future directions. First, one might extend our ap-
proach to speed up UCB-style algorithms for different prob-
lems such as combinatorial best-arm identification (Chen
et al., 2014; Du et al., 2021) and nonstationary semi-bandits
(Zhou et al., 2020; Chen et al., 2021). Second, another di-
rection is to study the possibility of speeding up other forms
of weights, such as those derived from gradients (Tzeng
et al., 2023) and those in the follow-the-perturbed-leader
algorithm (Neu and Bartók, 2016).
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A. Notation

Problem setting
K the number of arms
X the bases of the given matroid ([K], I)
D maxx∈X ∥x∥0
µ the mean vector of the K arms ν1, · · · , νK
i⋆(µ) an action attaining maxx∈X ⟨µ,x⟩
Notation related to FasterCUCB
Nk(t) the number of arm pulls of arm k
x(t) the action selected by the algorithm at round t
y(t) the reward vector at round t
µ̂k(t) the empirical reward 1

Nk(t)

∑t
s=1 yk(t)1{xk(t) = 1} of arm k at round t

λt the parameter that controls the confidence interval

Notation related to dynamic algorithm
fk = (αk, βk) a nonnegative two-dimensional feature of arm k
q a nonnegative two-dimensional query
(αlb, αub) lower and upper bounds of αk’s
(βlb, βub) lower and upper bounds of βk’s
W (the square root of) the number of bins
BINq,r bins that partition the possible region of the features
domq,r dominating point of BINq,r

dom(fk) dominating point of BINq,r to which fk belongs
L = {l1, . . . , l(K2 )} the set of

(
K
2

)
lines, each of which is orthogonal to line

←−−→
fkfk′ for some k ̸= k′ and intersects 0

H a minimum hitting set of the cells in arrangement of L
Notation related to regret analysis
{j}Dj=1 the permutation of supp (i⋆) such that µ1 ≥ · · · ≥ µD

ϵ the precision parameter which is set to 1
logm T in FasterCUCB (Algorithm 5)

gt(j) the mapping from supp (i⋆) to supp (x(t)) such that
(i) gt(j) = j if j ∈ supp (i⋆) ∩ supp (x(t))

(ii) xgt(j)(t) = 1 implies
〈
dom(fgt(j)),h

〉
≥ 1

1+ ϵ
3

〈
dom(f j),h

〉

△j,k the difference µj − µk between arm j’s and arm k’s expected reward
△min the smallest positive gap△i,j between any pair of i ∈ supp (i⋆) and j /∈ supp (i⋆)
dk the largest j ∈ [D] such that△δ(j),k > 0

µ̃k(t) the average 1
t

∑t
s=1 yk(s) of rewards of arm k in the first t rounds

uk(s, t) the UCB value of µ̃k(s) +
λt√
s

under s samples of arm k and with confidence parameter λt

Table 2. Table of notation.
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B. Further Related Works
In this section, we review relevant literatures on combinatorial semi-bandits and sublinear-time bandits. We focus on
the stochastic setting. For ease of comparison, we assume the best action i⋆ ∈ argmaxx∈X ⟨x,µ⟩ is unique, and define
△min ≜ minj,k∈[K]:i⋆j=1,i⋆k=0,µj−µk>0(µj − µk), and△ ≜ minx̸=i⋆:⟨i⋆−x,µ⟩>0 ⟨i⋆ − x,µ⟩.

Matroid semi-bandits. Kveton et al. (2014a) showed an instance such that any uniformly good algorithm2 suffer
R(T ) = Ω

(
(K−D) log T

△min

)
. They also showed that CUCB (Gai et al., 2012; Chen et al., 2013) have a regret bound scaling

as O
(

(K−D) log T
△min

)
. Talebi and Proutiere (2016) showed an instance-specific lower bound lim infT→∞

R(T )
log T ≥ c(µ) for

uniformly good algorithms, where c(µ) is the optimum of a semi-infinite linear program (Graves and Lai, 1997; Combes
et al., 2015), and proposed KL-OSM whose regret upper bound matches this lower bound. The per-round compleixty of
KL-OSM is K line search for generating the indices plus the time for solving a linear maximization. Both CUCB and
KL-OSM rely on the greedy algorithm (Algorithm 1) to solve the linear maximization for determing the action to be pulled.
The time complexity of the greedy algorithm is upper bounded by O(K(logK + Tmember)) time and lower bounded by
Ω(K). (Perrault et al., 2019) showed that the sampling rule of many combinatorial semi-bandit algorithms is a maximization
problem over a summation of a linear function and a submodular function, and proposed two efficient algorithms for matroid
semi-bandits: One is based on local search and the other is a greedy algorithm. Both have per-round time complexity at
least Ω(KD). In contrast, our FasterCUCB is the first matroid semi-bandit algorithm with per-round time complexity
sublinear in K for many classes of matroids.

Combinatorial semi-bandits. Here, we review works that focus on the standard setting of stochastic combinatorial
semi-bandits. These consider a linear reward function and any action sets X , where linear maximization maxx∈X ⟨x,v⟩ for
any v ∈ RK can be solved in time polynomial in K. We omit the discussion on works that focus on a specific action set
(Chowdhury et al., 2023), with additional structural assumptions on the rewards (Wen et al., 2015; Perrault et al., 2020b), or
with a different reward function (Papadigenopoulos and Caramanis, 2021). Perrault et al. (2020a) showed that CTS has
a regret bound of O(K log2 D log T

△ ) for mutually independent gaussian rewards and a regret bound of O(KD log2 D log T
△ )

for correlated gaussian rewards. Perrault (2022) sharpen the regret bound of CTS for the case of mutually independent
gaussian rewards to be O(K logD log T

△ ). The per-round time complexity of CTS is at least Ω(K) due to sampling from

the posterior distributions. Degenne and Perchet (2016) showed that ESCB2 has regret bound of O(K log2 D log T
△ ) for

independent subgaussian rewards, but its sampling rule is NP-hard (Atamtürk and Gómez, 2017) to optimize. Cuvelier
et al. (2021b) proposed AESCB that approximates ESCB2 with per-round time complexity of O(KD log3K poly (log T ))
while maintaining the same regret bound. Their technique is based on rounding and budgeted-linear maximization. OSSB
(Combes et al., 2017) is an asymptotically instance-specifically optimal algorithm for general structured bandits, including
combinatorial semi-bandits, but at each round, it requires to solve a semi-infinite linear program (Graves and Lai, 1997).
Cuvelier et al. (2021a) developed a method that runs in time polynomial in K to solve the semi-infinite linear program for
Gaussian rewards. They managed to maintain OSSB’s asymptotic optimality for m-sets, but not for spanning trees and
bipartite matchings. Ito (2021) and Tsuchiya et al. (2023) proposed algorithms based on the optimistic FTRL framework
that achieve O(KD log T

△ ) regret in the stochastic setting and O(√KDT log T ) in the adversarial setting. At each round,
the proposed algorithms first use FTRL rule to obtain a vector a(t) in the convex hull of X and then sample an action x(t)
based on a(t). Tsuchiya et al. (2023) mentioned that the computational efficiency of the sampling step has long been a
problem in semi-bandits using the optimistic FTRL framework.

Sublinear-time linear bandits. Several works (Jun et al., 2017; Yang et al., 2022) focusing on making per-round
complexity of linear bandits sublinear in the number of arms. Maximum Inner Product Search (MIPS) is the primary tool
used to design such algorithms. For N arms in Rd, Q-GLOC (Jun et al., 2017) achieves a high-probability regret bound
of Õ(d 5

4

√
T ) and per-round time complexity of Õ(d2Nρ logN) for some ρ ∈ (0, 1), where Õ hides polylogarithmic

factors in T and d. Yang et al. (2022) considered the setting with arms addition (resp. addition and deletion), and proposed
Sub-Elim (resp. Sub-TS), which has a high-probability regret bound of Õ(d

√
T ) (resp. Õ(d 3

2

√
T )) and per-round time

complexity of N1−Θ( 1
T2 log2 T

) (resp. N1−Θ( 1
T )). These results are applicable to our setting with d = K and N = |X |.

Q-GLOC (Jun et al., 2017) applied to our setting has regret bound of Õ(K
5
4

√
T ) and per-round time compleixty Õ(K2|X |ρ).

2A uniformly good algorithm has the expected regret R(T ) = o(Tα) hold for any α > 0.
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Sub-Elim (resp. Sub-TS) Yang et al. (2022) applied to our setting has regret bound of Õ(K
√
T ) (resp. Õ(K 3

2

√
T )) and

has per-round time complexity of |X |1−Θ( 1
T2 log T

) (resp. |X |1−Θ( 1
T )). These results have worse regret bounds than what we

have obtained, and their per-round time complexity can be exponential in K.
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Appendix D. Matroid semi-bandits in sublinear time 162



Matroid Semi-Bandits in Sublinear Time

C. Membership Oracles for Different Matroids
In this section, we discuss Tmember for the matroids shown in Section 2.

• For uniform matroid, the membership oracle is given x ∈ I and k ∈ [K]\ supp (x), and has to check whether
| supp (x+ ek)| ≤ D. Suppose the number n = | supp (x)| is maintained. Then, it takes O(1) time to check whether
n+ 1 ≤ D, and hence Tmember = O(1).

• For partition matroids, the membership oracle is given x ∈ I and k ∈ [K]\ supp (x), and has to check whether
| supp (x+ ek) ∩ Si| ≤ 1 for all i ∈ [D]. Suppose there is an integer array A of size K such that j ∈ SA[j] for
each j ∈ [K], and suppose there is an integer array B of size D such that B[i] =

∑
j∈ supp(x) 1{j ∈ Si} for each

i ∈ [D]. Then, to decide whether whether x+ ek ∈ I , it only requires to check whether B[A[k]] + 1 ≤ 1. This can be
implemented in O(1) time, and thus Tmember = O(1).

• For graphical matroids, the membership oracle has to detect if there is a cycle. Using the union-find data structure,
whether supp (x) ∪ {k} has a cycle can be detected in O(logK) time, so we have Tmember = O(logK). Refer to
Section 4.6 in (Kleinberg and Tardos, 2006) for more detailed explanation.

• For transversal matroids, there is little discussion about its membership oracle. Here we present an implementation
to answer a query (x, k) about whether x + ek ∈ I, where x ∈ I and k ∈ [K]\ supp (x). Suppose a maximum
matching M on supp (x) ∪ V is maintained. Then, answering whether x+ ek ∈ I is equivalent to checking whether
an augmenting path on supp (x+ ek) ∪ V from M can be found. Finding a augmentation path can be done by a
breadth-first search (BFS) starting from k (see Section 17.2 in (Schrijver, 2003)), and it takes O(DK) time because
there are at most K leaves in the BFS tree and the length of the path from k to each leaf is at most 2D. Thus, we have
Tmember = O(DK).
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BIN1,𝑊 BIN2,𝑊 ⋯ BIN𝑊−1,𝑊 BIN𝑊,𝑊

BIN1,𝑊−1 BIN2,𝑊−1 ⋯ BIN𝑊−1,𝑊−1 BIN𝑊,𝑊−1

⋮ ⋮ ⋮ ⋮ ⋮

BIN1,2 BIN2,2 ⋯ BIN𝑊−1,2 BIN𝑊,2

BIN1,1 BIN2,1 ⋯ BIN𝑊−1,1 BIN𝑊,1

⋯

0

𝛽lb 1 + 𝜂 0

𝛽lb 1 + 𝜂 1

𝛽lb 1 + 𝜂 𝑊−1

𝛽lb 1 + 𝜂 2

𝛽lb 1 + 𝜂 𝑊

dom2,2

dom𝑊,1

dom𝑊,𝑊

dom𝑊,2

dom1,𝑊

dom−∞,𝑊−1

dom2,1

dom𝑊,𝑊−1

dom𝑊−1,2

dom2,−∞

⋮
⋮

⋅⋅⋅⋅⋅⋅

Figure 1. Illustration of feature rounding. There are |W|2 bins, and features are assumed not to be in (the interior of) the shaded area. Each
feature fk is rounded to its dominating point dom(fk), which is specified by a curved arrow.

D. Omitted Proofs in Section 4
Proof of Lemma 4.6. By Eq. (8) and the optimality of x∗

dom, for any base x, we have
∑

k∈ supp(x∗
dom)

⟨fk, q⟩

>
1

1 + η
·

∑

k∈ supp(x∗
dom)

⟨dom(fk), q⟩ (by Eq. (8))

≥ 1

(1 + η)2
·

∑

k∈ supp(x)

⟨dom(fk), q⟩ (by optimality of x∗
dom)

≥ 1

(1 + η)2
·

∑

k∈ supp(x)

⟨fk, q⟩ (by Eq. (8))

≥ 1

1 + ϵ
·

∑

k∈ supp(x)

⟨fk, q⟩. (as (1 + η)2 ≤ 1 + ϵ)

Proof of Lemma 4.7. The proof follows from the uniqueness of the maximum-weight base in the case of distinct weights;
see, e.g., (Edmonds, 1971).

Proof of Lemma 4.8. For a query q ∈ R2, let C ⊂ R2 be a cell in arrangement of L whose closure contains q (which
may not be uniquely determined). Then, there is a permutation π ∈ SK such that for any vector h ∈ H ∩ C, we have
⟨fπ(i),h⟩ > ⟨fπ(j),h⟩ whenever i < j. Since q is in the closure of C, it holds that ⟨fπ(i), q⟩ ≥ ⟨fπ(j), q⟩ for any i < j,
implying the proof.

Proof of Lemma 4.9. Since each cell in arrangement of L is a polyhedral cone generated by two lines of L that does not
contain any other lines of L, there are onlyO(K2) cells, and each of their internal points can be found by using Algorithm 6,
as desired.
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𝒇1

𝒇2

𝒇3

O

Figure 2. Illustration of characterization of representable permutations. There are three features f1,f2,f3 on R2. Each dashed line
denotes

←−→
f if j for some i ̸= j; each black bold line is orthogonal to some dashed line and intersects the origin. Such black bold lines

generate six regions, each corresponding to a distinct permutation. For example, for any query q in the hatched area, it holds that
⟨f1, q⟩ > ⟨f2, q⟩ > ⟨f3, q⟩; i.e., q represents a permutation π such that (π(1), π(2), π(3)) = (1, 2, 3).

Algorithm 6 GENERATE-HITTING-SET.
Input: K distinct features (fk)k∈[K].
let Θ← ∅;
for all k ̸= k′ do

let L be a unique line that is orthogonal to line
←−−→
fkfk′ and intersects 0;

add the angle θ of L and −θ to Θ;
end
letH ← ∅;
for all neighboring (but distinct) θ1 and θ2 in Θ do

let h ≜
(
cos( θ1+θ2

2
), sin( θ1+θ2

2
)
)

be an internal point of a polyhedral cone generated by two half-lines whose angles are θ1 and θ2;
add h toH;

end
returnH;

Proof of Theorem 4.4. The correctness of FIND-BASE is shown first. Given a query q ∈ R2
+, Algorithm 3 finds h ∈ H

such that ⟨fk,h⟩ > ⟨fk′ ,h⟩ implies ⟨fk, q⟩ ≥ ⟨fk′ , q⟩ due to Lemma 4.8. Calling Ah finds a (1 + η)-approximate
maximum-weight base x◦ ofM with arm k’s weight defined as ⟨dom(fk),h⟩. Since a total order over [K] induced by
arm weights ⟨dom(fk),h⟩ is consistent with that induced by arm weights ⟨dom(fk), q⟩, by Lemma 4.7, x◦ is also a
(1 + η)-approximate maximum-weight base ofM with arm k’s weight defined as ⟨dom(fk), q⟩. By Lemma 4.6,

∑

k∈ supp(x◦)

⟨fk, q⟩ ≥
1

1 + ϵ
·

∑

k∈ supp(x)

⟨fk, q⟩, (17)

for any base x ofM; namely, x◦ is a (1 + ϵ)-approximate maximum-weight base ofM with arm k’s weight defined as
⟨fk, q⟩, completing the correctness of FIND-BASE.

Subsequently, we bound the time complexity of each subroutine as follows.

INITIALIZE: Construction of BINq,r and domq,r for all q, r ∈ W completes in O(K +W 2) time. Then, a hitting setH
for domq,r’s and 1

1+η · domq,r’s of size |H| = O(W 4) can be constructed in poly (W ) time due to Lemma 4.9. There
will be |H| instances of algorithm A (with different arm weights), creating which takes O(W 4 · Tinit(A; η)) time.

FIND-BASE: Checking whether each h ∈ H and query q ∈ R2
+ belong to (the closure of) the same cell in arrangement of

16
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V can be done in O(W 2) time by comparing the induced total orders. By brute-force search, a desired h can be found
in O(W 6) time. Since calling Ah requires O(D) time, the entire time complexity is bounded by O( poly (W ) +D).

UPDATE-FEATURE: For |H| instances of A, a single arm’s weight would be changed, each of which runs in Tupdate(A; η)
time.

Observe finally that

W = max

{⌈
log1+η

(
αub

αlb

)⌉
,

⌈
log1+η

(
βub

βlb

)⌉}

= O
(
log(αub

αlb
) + log(βub

βlb
)

log(1 + η)

)

= O
(
η−1 · log

(
αub

αlb
· βub

βlb

))

= O
(
ϵ−1 · log

(
αub

αlb
· βub

βlb

))
,

(18)

where we used the fact that 1
log(1+η) <

1
η when η ∈ (0, 1), completing the proof.
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E. Proofs Related to Regret Analysis
E.1. Proofs Related to the Bijection gt

Lemma 5.2. There exists a bijection gt : supp (i⋆)→ supp (x(t)) such that (i) gt(j) = j for j ∈ supp (i⋆)∩ supp (x(t));
(ii) for any j ∈ supp (i⋆) \ supp (x(t)),

xgt(j)(t) = 1 =⇒
〈
dom(fgt(j)),h

〉
≥
〈
dom(f j),h

〉

1 + 1
3 logm T

.

Proof: Let η ≜ 1
3 logm T . The proof is inspired by Section 4.2 in (Kveton et al., 2014a), and several changes are made to

deal with the usage of the dynamic(1 + η)-approximate maximum-weight basis algorithm in the FIND-BASE procedure.

Let ξt : [D]→ supp (x(t)) be the ordering such that ξt(i)’s arm weight
〈
dom(f ξt(i)),h

〉
is the i-th largest, where h ∈ H

lies in the same cell as the query q = (1, λt) when invoking FIND-BASE procedure.

Explicit construction of gt: We define

gt(j) = ξt(π
−1
t (j)),∀j ∈ supp (i⋆) ,

where the function πt : [D]→ supp (i⋆) is a bijection such that the following hold:

(i)
∑k−1

i=1 eξt(i) + eπt(k) ∈ I for all k ∈ [D]

(ii) πt(k) = ξt(k) if ξt(k) ∈ supp (i⋆) ∩ supp (x(t))

The existence of πt is proved in Lemma E.1 and also by Lemma 1 of (Kveton et al., 2014a).

Show (i) gt(j) = j for j ∈ supp (i⋆) ∩ supp (x(t)): Fix any j ∈ supp (i⋆) ∩ supp (x(t)). From the definition of πt, we
have πt(j) = ξt(j) and hence gt(j) = ξt(π

−1
t (j)) = ξt(ξ

−1
t (j)) = j.

Show (ii) xgt(j)(t) = 1 =⇒
〈
dom(fgt(j)),h

〉
≥ ⟨dom(fj),h⟩

1+η : Fix any j ∈ supp (i⋆) \ supp (x). Let k = π−1
t (j).

Observe that the bijection πt captures the situation that: The algorithm can choose πt(k) ∈ supp (i⋆) as the k-th element
but instead chooses ξt(k) ∈ supp (x(t)). By the procedure of Algorithm 3 and Assumption 4.2, this happens when

〈
dom(f ξt(k)),h

〉
≥ 1

1 + η

〈
dom(fπt(k)),h

〉
,

and replacing k = π−1
t (j) completes the proof. □

Lemma E.1. Let x, i⋆ ∈ X , and ξ : [D]→ supp (x) be an arbitrary bijection. There exists a bijection π : [D]→ supp (i⋆)
such that

∑k−1
i=1 eξ(i) + eπ(k) ∈ I for all k ∈ [D].

Proof: This lemma is equivalent to Lemma 1 of (Kveton et al., 2014a). For reader’s convenience, we provide a proof here.

For k = D, consider
∑D−1

i=1 eξ(i) ∈ I (due to hereditary property), and i⋆ ∈ I. As the former has D − 1 element while the
latter has D elements, by augmentation property, there exists π(D) ∈ supp (i⋆) such that

∑D−1
i=1 eξ(i) + eπ(D) ∈ I. For

the case when ξ(D) ∈ supp (i⋆) ∩ supp (x), we set π(D) = ξ(D).

The proof is completed by repeating the following process for k = D − 1, · · · , 1. As
∑k−1

i=1 eξ(i) ∈ I (due to hereditary
property) has k − 1 elements, and i⋆ −∑D

i=k+1 eπ(i) ∈ I (due to hereditary property) has k elements, by augmentation
property, there exists π(k) such that

∑k−1
i=1 eξ(i) + eπ(k) ∈ I. If ξ(k) ∈ supp (i⋆) ∩ supp (x), we set π(k) = ξ(k). □

E.2. Lemmas Related to Regret Analysis of Algorithm 5

In this section, we fix a best action i⋆ ∈ argmaxx∈X ⟨µ,x⟩ and define△j,k ≜ µj − µk. Let {j}Dj=1 be the permutation of
supp (i⋆) such that µ1 ≥ · · · ≥ µD. Define dk ≜ max{j ∈ supp (i⋆) : △j,k > 0} and△min ≜ mink/∈ supp(i⋆)△dk,k

.
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Lemma 5.3. Let ϵ < △min

b . Then, for any i ∈ supp (i⋆) and any j /∈ supp (i⋆),

µi − µj > 0 =⇒ µi

1 + ϵ
− µj > 0.

Proof: Fix i ∈ supp (i⋆) and j /∈ supp (i⋆) such that µi − µj > 0. We want the following to hold:

µi

1 + ϵ
− µj > 0⇐⇒ µi − (1 + ϵ)µj > 0⇐⇒ µi − µj > ϵµj .

As µi − µj > ϵµj must hold for all such i and j, taking the minimum over all possible i and j on the left-hand side, and use
the fact that µj ≤ b for all j on the right-hand side, we derive

△min

b
> ϵ

is the condition on ϵ to ensure µi − µj > 0 =⇒ µi

1+ϵ − µj > 0 holds for all i and j. □

Lemma 5.4. Let k /∈ supp (i⋆) and j ∈ [dk]. For T > T0,

dk∑

j=1

△j,k(I)j,k ≤
dk∑

j=1

△j,kT0 +
12(b− a)2△dk,k

log T

(
µdk

1+log−m T
− µk)2

.

Proof: Recall (I)j,k =
∑T

t=1 E
[
1

{
gt(j) = k,Nk(t) ≤ nj,k

}]
, where nj,k = max

{
6(b−a)2 log T

(
µj

1+log−m T
−µk)2

, T0

}
.

First, we claim that: for any {aj}dk
j=1 with a1 ≥ · · · ≥ adk

≥ 0,

dk∑

j=1

aj(I)j,k ≤ a1n1,k +

dk∑

j=2

aj(nj,k − nj−1,k). (19)

Show Eq. (19): We show by induction. For the base case, we have

a1(I)1,k + a2(I)2,k ≤ a1n1,k + a2(n2,k − n1,k). (20)

Eq. (20) is derived as follows. Since a1, a2 ≥ 0 and

(I)1,k + (I)2,k =

T∑

t=1

E
[
1
{
gt(1) = k,Nk(t) ≤ n1,k

}
+ 1

{
gt(2) = k,Nk(t) ≤ n2,k

}]
≤ max{n1,k, n2,k} = n2,k,

therefore we can bound (I)2,k as (I)2,k ≤ n2,k − (I)1,k, yields that:

a1(I)1,k + a2(I)2,k ≤ (a1 − a2)(I)1,k +△2,kn2,k.

Then, since a1 ≥ a2 and (I)1,k ≤ n1,k, we derive

a1(I)1,k + a2(I)2,k ≤ (a1 − a2)n1,k + a2n2,k,

which shows Eq. (20). Now, assume for any {bj}ℓj=1 with b1 ≥ · · · ≥ bℓ ≥ 0, the following

ℓ∑

j=1

bj(I)j,k ≤ b1n1,k +
ℓ∑

j=2

bj(nj,k − nj−1,k) (21)

holds for ℓ < dk.

19
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Fix any {aj}ℓ+1
j=1 with a1 ≥ · · · ≥ aℓ+1 ≥ 0. Consider

∑ℓ+1
j=1 aj(I)j,k. Since aj ≥ 0 for all j ∈ [ℓ+ 1] and

ℓ+1∑

j=1

(I)j,k =
T∑

t=1

E




ℓ+1∑

j=1

1
{
gt(j) = k,Nk(t) ≤ n1,k

}

 ≤ max

j∈[ℓ+1]
nj,k = nℓ+1,k,

we can bound (I)ℓ+1,k as (I)ℓ+1,k ≤ nℓ+1,k −
∑ℓ

j=1(I)j,k, which results in:

ℓ+1∑

j=1

aj(I)j,k ≤
ℓ∑

j=1

(aj − aℓ+1)(I)j,k + aℓ+1nℓ+1,k.

Since a1 − aℓ+1 ≥ · · · ≥ aℓ − aℓ+1 ≥ 0, using inductive hypothesis Eq. (21) with bj = aj − aℓ+1 for all j ∈ [ℓ], we get

ℓ+1∑

j=1

aj(I)j,k ≤ (a1 − aℓ+1)n1,k +

ℓ∑

j=2

(aj − aℓ+1)(nj,k − nj−1,k) + aℓ+1nℓ+1,k.

= a1n1,k +
ℓ∑

j=2

aj(nj,k − nj−1,k)− aℓ+1


n1,k +

ℓ∑

j=2

(nj,k − nj−1,k)− nℓ+1,k




= a1n1,k +
ℓ∑

j=2

aj(nj,k − nj−1,k) + aℓ+1(nℓ+1,k − nℓ,k)

= a1n1,k +
ℓ+1∑

j=2

aj(nj,k − nj−1,k).

Thus, Eq. (19) is proved by induction.

Define ϵ ≜ log−m T and △j,k(ϵ) ≜ µj

1+ϵ − µk. Using Eq. (19) with aj = △j,k for j ∈ [dk] and recalling nj,k ≜
max

{
6(b−a)2 log T

△j,k(ϵ)2
, T0

}
, we have

dk∑

j=1

△j,k(I)j,k ≤ △1,kn1,k +

dk∑

j=2

△j,k(nj,k − nj−1,k)

≤
dk∑

j=1

△j,kT0 + 6(b− a)2 log T


 △1,k

△1,k(ϵ)
2
+

dk∑

j=2

△j,k

(
1

△j,k(ϵ)
2
− 1

△j−1,k(ϵ)
2

)
 .

We upper bound the last term by:

△1,k

△1,k(ϵ)
2
+

dk∑

j=2

△j,k

(
1

△j,k(ϵ)
2
− 1

△j−1,k(ϵ)
2

)
=

dk−1∑

j=1

△j,k(ϵ)−△j+1,k(ϵ)

(△j,k(ϵ))
2

+
△dk,k

△dk,k
(ϵ)2

≤
dk−1∑

j=1

△j,k(ϵ)−△j+1,k(ϵ)

△j,k(ϵ)△j+1,k(ϵ)
+
△dk,k

△dk,k
(ϵ)2

=

dk−1∑

j=1

(
1

△j+1,k(ϵ)
− 1

△j,k(ϵ)

)
+
△dk,k

△dk,k
(ϵ)2

≤
2△dk,k

△dk,k
(ϵ)2

,

where the first inequality is due to△j,k(ϵ) ≥ △j+1,k(ϵ), and the second upperbounds the telescoping series:

dk−1∑

j=1

(
1

△j+1,k(ϵ)
− 1

△j,k(ϵ)

)
=

1

△dk,k
(ϵ)
− 1

△1,k(ϵ)
≤ 1

△dk,k
(ϵ)
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Hence, we derive an upper bound for the first part relevant to (I)j,k:

dk∑

j=1

△j,k(I)j,k ≤
dk∑

j=1

△j,kT0 +
12(b− a)2△dk,k

log T

△dk,k
(ϵ)2

.

□
Lemma 5.5. Let k /∈ supp (i⋆) and j ∈ [dk]. For T > T0,

(II)j,k ≤
1

T
+
π2

6
.

Proof of Lemma 5.5: Let ϵ = 1
logm T . Recall

(II)j,k =

T∑

t=1

E
[
1

{
gt(j) = k,Nk(t) > nj,k

}]
,

where nj,k = max

{
6(b−a)2 log T

(
µj

1+log−m T
−µk)2

, T0

}
.

First, we claim that

gt(j) = k =⇒ uk(Nk(t− 1), T ) ≥
mins<t uj(s, t)

1 + ϵ
, (14)

where uk(s, t) = µ̃k(s) +
√

1.5(b−a)2 log t
s and µ̃k(t) =

1
t

∑t
s=1 yk(s).

Show Eq. (14): Observe that gt(j) = k implies

(
1 +

ϵ

3

)
⟨fk, q⟩ ≥ ⟨dom(fk), q⟩ ≥

〈
dom(f j), q

〉

1 + ϵ
3

≥

〈
f j , q

〉

1 + ϵ
3

,

where Eq. (8) is used in the first and the last inequality, and the second inequality is due to Lemma 5.2 and Corollary 4.10.
By (1 + ϵ

3 )
2 ≤ 1 + ϵ and expanding fk = (µ̂k(t− 1), 1√

Nk(t−1)
) and q = (1,

√
1.5(b− a)2 log t), we have

uk(Nk(t− 1), t) ≥
uj(Nj(t− 1), t)

1 + ϵ
.

As log T > log t and Nj(t− 1) ∈ [t− 1], we further derive

uk(Nk(t− 1), T ) ≥
uj(Nj(t− 1), t)

1 + ϵ
≥

mins<t uj(s, t)

1 + ϵ
,

which shows Eq. (14).

Second, let Tj,k = {t ∈ {nj,k + 1, · · · , T} : gt(j) = k,Nk(t− 1) > nj,k}. From Eq. (14), we derive

(II)j,k =
T∑

t=nj,k+1

P
[
gt(j) = k,Nk(t− 1) > nj,k

]

≤
∑

t=nj,k+1

P

[
uk(Nk(t− 1), T ) ≥

mins<t uj(s, t)

1 + ϵ
and t ∈ Tj,k

]

≤
∑

t=nj,k+1

∑

s<t

P

[
uk(Nk(t− 1), T ) ≥

uj(s, t)

1 + ϵ
and t ∈ Tj,k

]
, (22)
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where the last inequality uses union bound.

Third, we now upper bound each term P
[
uk(Nk(t− 1), T ) ≥ uj(s,t)

1+ϵ and t ∈ Tj,k
]

in Eq. (22). Remind that

uk(Nk(t− 1), T ) ≥
uj(s, t)

1 + ϵ
⇐⇒ µ̃k(Nk(t− 1)) +

λT√
Nk(t− 1)︸ ︷︷ ︸

At

≥
µ̃j(s) +

λt√
s

1 + ϵ︸ ︷︷ ︸
Bt,s

.

Define the event Et,s = {At ≥ Bt,s and t ∈ Tj,k}. We will partition the event Et,s by comparingAt toA′
t = µk+

2λT√
Nk(t−1)

and comparing Bt,s to B′ =
µj

1+ϵ as follows:

• Et,s ∩
{
At ≥ A′

t and t ∈ Tj,k
}
⊆
{
µ̃k(Nk(t− 1)) ≥ µk + λT√

Nk(t−1)
and t ∈ Tj,k

}

• Et,s ∩ {Bt,s ≤ B′ and t ∈ Tj,k} ⊆
{
µj ≥ µ̃j(s) +

λt√
s

and t ∈ Tj,k
}

• Et,s ∩ {At < A′
t and Bt,s > B′ and t ∈ Tj,k} ⊆

{
µk + 2λT√

Nk(t−1)
>

µj

1+ϵ and t ∈ Tj,k
}

. The inclusion is because

under the event Et,s ∩ {At < A′
t and Bt,s > B′ and t ∈ Tj,k}, we have

µk +
2λT√

Nk(t− 1)
= A′

t > At ≥ Bt,s > B′ =
µj

1 + ϵ
,

where the first and last inequalities are due to the event {At < A′
t and Bt,s > B′ and t ∈ Tj,k}, and the second

inequality is due to the event Et,s = {At ≥ Bt,s and t ∈ Tj,k}.

Hence, we have the following inclusion:

{At ≥ A′
t and t ∈ Tj,k} ∪ {Bt,s ≤ B′ and t ∈ Tj,k} ∪ {At < A′

t and Bt,s > B′ and t ∈ Tj,k}
= {t ∈ Tj,k} ⊃ {At ≥ Bt,s and t ∈ Tj,k} = Et,s.

From union bound,

P[Et,s] ≤ P
[
{At ≥ A′

t and t ∈ Tj,k} ∩ Et,s
]
+ P

[
{Bt,s ≤ B′ and t ∈ Tj,k} ∩ Et,s

]

+ P
[
{At < A′

t and Bt,s > B′ and t ∈ Tj,k} ∩ Et,s
]

≤ P

[
µk +

λT√
Nk(t− 1)

≤ µ̃k(Nk(t− 1)) and t ∈ Tj,k

]

+ P

[
µj ≥ µ̃j(s) +

λt√
s

and t ∈ Tj,k
]
+ P

[
µk +

2λT√
Nk(t− 1)

>
µj

1 + ϵ
and t ∈ Tj,k

]
. (23)

In Eq. (23), recall λt =
√

1.5(b− a)2 log t and observe that the last term

P

[
µk + 2

√
1.5(b− a)2 log T

Nk(t− 1)
≥

µj

1 + ϵ
and t ∈ Tj,k

]
≤ P

[
µk + 2

√
1.5(b− a)2 log T

nj,k + 1
≥

µj

1 + ϵ

]
= 0,

where the inequality is because t ∈ Tj,k implies Nk(t− 1) ≥ nj,k + 1, and the equality is because

nj,k ≥
6(b− a)2 log T
(

µj

1+ϵ − µk)2
=⇒ 6(b− a)2 log T

nj,k + 1
<

(
µj

1 + ϵ
− µk

)2
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and also we have
µj

1+ϵ − µk > 0 which is ensured by Lemma 5.3 as T > T0. Finally, from Eq. (22) and Eq. (23),

(II)j,k ≤
T∑

t=nj,k+1

∑

s<t

P

[
µ̃k(Nk(t− 1)) ≥ µk +

√
1.5(b− a)2 log T

Nk(t− 1)
and t ∈ Tj,k

]

+

T∑

t=nj,k+1

∑

s<t

P

[
µj ≥ µ̃j(s) +

√
1.5(b− a)2 log t

s
and t ∈ Tj,k

]

≤
T∑

t=nj,k+1

∑

s<t

(
P

[
µ̃k(t− 1) ≥ µk +

√
1.5(b− a)2 log T

t− 1

]
+ P

[
µj ≥ µ̃j(s) +

√
1.5(b− a)2 log t

s

])

≤
T∑

t=nj,k+1

∑

s<t

(
e−3 log T + e−3 log t

)
,

where the second inequality is because {Nk(t− 1)}t∈Tj,k
is strictly increasing (as Nk(t) = Nk(t− 1)+ 1 when gt(j̄) = k)

and thus is a subsequence of {nj,k + 1, · · · , T}, and the last inequality is due to an application of Hoeffding’s inequality
(Lemma E.2) with s =

√
1.5(t− 1)(b− a)2 log T and n = t− 1 to bound the first term and with s =

√
1.5s(b− a)2 log t

and n = s to bound the second term. The proof is completed by evaluating

T∑

t=1

∑

s<t

e−3 log T ≤
T∑

t=1

t

T 3
≤ T (T + 1)

2T 3
≤ 1

T
,

T∑

t=1

∑

s<t

e−3 log t ≤
∞∑

t=1

t

t3
≤

∞∑

t=1

1

t2
≤ π2

6
.

□
Lemma E.2 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables such that Xi ∈ [a, b] for all
i ∈ [n]. Then, for all s > 0,

P

[
n∑

i=1

(Xi − E[Xi]) ≥ s
]
≤ exp

(
− 2s2

n(b− a)2
)
.
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